保姆级使用PyTorch训练与评估自己的EfficientNetV2网络教程

文章目录
- 前言
- 0. 环境搭建&快速开始
- 1. 数据集制作
- 1.1 标签文件制作
- 1.2 数据集划分
- 1.3 数据集信息文件制作
- 2. 修改参数文件
- 3. 训练
- 4. 评估
- 5. 其他教程
前言
项目地址:https://github.com/Fafa-DL/Awesome-Backbones
操作教程:https://www.bilibili.com/video/BV1SY411P7Nd
EfficientNetV2原论文:点我跳转
如果你以为该仓库仅支持训练一个模型那就大错特错了,我在项目地址放了目前支持的42种模型(LeNet5、AlexNet、VGG、DenseNet、ResNet、Wide-ResNet、ResNeXt、SEResNet、SEResNeXt、RegNet、MobileNetV2、MobileNetV3、ShuffleNetV1、ShuffleNetV2、EfficientNet、RepVGG、Res2Net、ConvNeXt、HRNet、ConvMixer、CSPNet、Swin-Transformer、Vision-Transformer、Transformer-in-Transformer、MLP-Mixer、DeiT、Conformer、T2T-ViT、Twins、PoolFormer、VAN、HorNet、EfficientFormer、Swin Transformer V2、MViT V2、MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2),使用方式一模一样。且目前满足了大部分图像分类需求,进度快的同学甚至论文已经在审了
0. 环境搭建&快速开始
- 这一步我也在最近录制了视频
最新Windows配置VSCode与Anaconda环境
『图像分类』从零环境搭建&快速开始
- 不想看视频也将文字版放在此处。建议使用Anaconda进行环境管理,创建环境命令如下
conda create -n [name] python=3.6 其中[name]改成自己的环境名,如[name]->torch,conda create -n torch python=3.6
- 我的测试环境如下
torch==1.7.1
torchvision==0.8.2
scipy==1.4.1
numpy==1.19.2
matplotlib==3.2.1
opencv_python==3.4.1.15
tqdm==4.62.3
Pillow==8.4.0
h5py==3.1.0
terminaltables==3.1.0
packaging==21.3
- 首先安装Pytorch。建议版本和我一致,进入Pytorch官网,点击
install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
- 安装完Pytorch后,再运行
pip install -r requirements.txt
- 下载MobileNetV3-Small权重至datas下
- Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt
1. 数据集制作
1.1 标签文件制作
-
将项目代码下载到本地

-
本次演示以花卉数据集为例,目录结构如下:
├─flower_photos
│ ├─daisy
│ │ 100080576_f52e8ee070_n.jpg
│ │ 10140303196_b88d3d6cec.jpg
│ │ ...
│ ├─dandelion
│ │ 10043234166_e6dd915111_n.jpg
│ │ 10200780773_c6051a7d71_n.jpg
│ │ ...
│ ├─roses
│ │ 10090824183_d02c613f10_m.jpg
│ │ 102501987_3cdb8e5394_n.jpg
│ │ ...
│ ├─sunflowers
│ │ 1008566138_6927679c8a.jpg
│ │ 1022552002_2b93faf9e7_n.jpg
│ │ ...
│ └─tulips
│ │ 100930342_92e8746431_n.jpg
│ │ 10094729603_eeca3f2cb6.jpg
│ │ ...
- 在
Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

1.2 数据集划分
- 打开
Awesome-Backbones/tools/split_data.py - 修改
原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos' # 改为你自己的数据路径
new_dataset = 'A:/Awesome-Backbones/datasets'
- 在
Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
- 得到划分后的数据集格式如下:
├─...
├─datasets
│ ├─test
│ │ ├─daisy
│ │ ├─dandelion
│ │ ├─roses
│ │ ├─sunflowers
│ │ └─tulips
│ └─train
│ ├─daisy
│ ├─dandelion
│ ├─roses
│ ├─sunflowers
│ └─tulips
├─...
1.3 数据集信息文件制作
- 确保划分后的数据集是在
Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path = '你的数据集路径'
- 在
Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
- 在
Awesome-Backbones/datas下得到生成的数据集信息文件train.txt与test.txt

2. 修改参数文件
-
每个模型均对应有各自的配置文件,保存在
Awesome-Backbones/models下 -
由
backbone、neck、head、head.loss构成一个完整模型 -
找到EfficientNetV2参数配置文件,可以看到
所有支持的类型都在这,且每个模型均提供预训练权重

-
在
model_cfg中修改num_classes为自己数据集类别大小 -
按照自己电脑性能在
data_cfg中修改batch_size与num_workers -
若有预训练权重则可以将
pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights -
若需要冻结训练则
freeze_flag设置为True,可选冻结的有backbone, neck, head -
在
optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小 -
学习率更新详见
core/optimizers/lr_update.py,同样准备了视频『图像分类』学习率更新策略|优化器 -
更具体配置文件修改可参考配置文件解释,同样准备了视频『图像分类』配置文件补充说明
3. 训练
- 确认
Awesome-Backbones/datas/annotations.txt标签准备完毕 - 确认
Awesome-Backbones/datas/下train.txt与test.txt与annotations.txt对应 - 选择想要训练的模型,在
Awesome-Backbones/models/下找到对应配置文件,以efficientnetv2_b0为例 - 按照
配置文件解释修改参数 - 在
Awesome-Backbones路径下打开终端运行
python tools/train.py models/efficientnetv2/efficientnetv2_b0.py

4. 评估
- 确认
Awesome-Backbones/datas/annotations.txt标签准备完毕 - 确认
Awesome-Backbones/datas/下test.txt与annotations.txt对应 - 在
Awesome-Backbones/models/下找到对应配置文件 - 在参数配置文件中
修改权重路径,其余不变
ckpt = '你的训练权重路径'
- 在
Awesome-Backbones路径下打开终端运行
python tools/evaluation.py models/efficientnetv2/efficientnetv2_b0.py

- 单张图像测试,在
Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/efficientnetv2/efficientnetv2_b0.py

至此完毕,实在没运行起来就去B站看我手把手带大家运行的视频教学吧~
5. 其他教程
除开上述,我还为大家准备了其他一定用到的操作教程,均放在了GitHub项目首页,为了你们方便为也粘贴过来
- 环境搭建
- 数据集准备
- 配置文件解释
- 训练
- 模型评估&批量检测/视频检测
- 计算Flops&Params
- 添加新的模型组件
- 类别激活图可视化
- 学习率策略可视化
有任何更新均会在Github与B站进行通知,记得Star与三连关注噢~
相关文章:
保姆级使用PyTorch训练与评估自己的EfficientNetV2网络教程
文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址:https://github.com/Fafa-DL/Awesome-Backbones 操作教程:https://www.bilibili.co…...
【9】基础语法篇 - VL9 使用子模块实现三输入数的大小比较
VL9 使用子模块实现三输入数的大小比较 【报错】官方平台得背锅 官方平台是真的会搞事情,总是出一些平台上的莫名其妙的错误。 当然如果官方平台是故意考察我们的细心程度,那就当我没有说!! 在这个程序里,仿真时一直在报错 错误:无法在“test”中绑定wire/reg/memory“t…...
成功的项目管理策略:减少成本,提高质量
项目管理是一项具有挑战性的任务,项目团队需要合理的规划和策略,以确保项目的成功和达成预期。为了实现项目的成功,项目经理必须采用正确的策略,才能以最大限度地减少成本并提高项目质量。本文将探讨成功的项目管理策略࿰…...
centos 7下JDK8安装
下载安装包https://www.oracle.com/java/technologies/downloads/#java8-linux上传路径 /usr/local(替换为自己需要安装的路径)解压tar -zxvf jdk-8u131-linux-x64.tar.gz配置环境变量[rootlocalhost java]# vi /etc/profile添加如下配置在配置文件最后&…...
datatables.js中文项目使用案例
官方下载地址https://datatables.net/download/中文官网:http://datatables.club/资源引用<link href"~/datatables/datatables.min.css" rel"stylesheet" /> <script src"~/jquery.min.js" type"text/javascript"…...
Hadoop小结
Hadoop是什么Hadoop是一 个由Apache基金 会所开发的分布式系统基础架构。主要解决,海量数据的存储和海量数据的分析计算问题。广义上来说,Hadoop通 常是指一个更广泛的概念一Hadoop 生态圈。Hadoop优势Hadoop组成HDFS架构Hadoop Distributed File System,…...
经典卷积模型回顾14—vgg16实现图像分类(tensorflow)
VGG16是由牛津大学计算机视觉小组(Visual Geometry Group)开发的深度卷积神经网络模型。其结构由16层组成,其中13层是卷积层,3层是全连接层。 VGG16被广泛应用于各种计算机视觉任务,如图像分类、目标检测和人脸识别等。…...
#Vue2篇:keep-alive的属性和方法
定义 keep-alive 组件是 Vue.js 内置的一个高阶组件,用于缓存其子组件,以提高组件的性能和响应速度。 除了基本用法之外,它还提供了一些属性和方法,以便更好地控制缓存的组件。 属性 include属性用于指定哪些组件应该被缓存&a…...
webpack指南(项目篇)——webpack在项目中的运用
系列文章目录 webpack指南(基础篇)——手把手教你配置webpack webpack指南(优化篇)——webpack项目优化 文章目录系列文章目录前言一、配置拆分二、修改启动命令三、定义环境变量四、配置路径别名总结前言 前面我们对webpack的基…...
unicode字符集与utf-8编码的区别,unicode转中文工具、中文转unicode工具(汉字)
在cw上报的报警信息中,有一个name字段的值是\u4eba\u4f53 不知道是啥,查了一下,是unicode编码,用下面工具转换成汉字就是“人体” 参考文章:https://tool.chinaz.com/tools/unicode.aspx 那么我很好奇,uni…...
3D数学系列之——再谈特卡洛积分和重要性采样
目录一、前篇文章回顾二、积分的黎曼和形式三、积分的概率形式(蒙特卡洛积分)四、误差五、蒙特卡洛积分计算与收敛速度六、重要性采样七、重要性采样方法和过程八、重要性采样的优缺点一、前篇文章回顾 在前一篇文章3D数学系列之——从“蒙的挺准”到“蒙…...
Python错误 TypeError: ‘NoneType‘ object is not subscriptable解决方案汇总
目录前言一、引发错误来源二、解决方案2-1、解决方案一(检查变量)2-2、解决方案二(使用 [] 而不是 None)2-3、解决方案三(设置默认值)2-4、解决方案四(使用异常处理)2-5、解决方案五…...
VMware空间不足又无法删除快照的解决办法
如果因为快照删除半路取消或者失败,快照管理器就不再显示这个快照,但是其占用的空间还在,最终导致硬盘不足。 可以百度到解决方案,就是在快照管理器,先新建一个,再点删除,等待删除完成就可以将…...
类和对象(一)
类和对象(一) C并不是纯面向对象语言 C是面向过程和面向对象语言的! 面向过程和面向对象初步认识: C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。 C是基…...
Java 不同路径
不同路径中等一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?…...
【SAP PO】X-DOC:SAP PO 接口配置 REST 服务对接填坑记
X-DOC:SAP PO 接口配置 REST 服务对接填坑记1、背景2、PO SLD配置3、PO https证书导入1、背景 (1)需求背景: SAP中BOM频繁变更,技术人员在对BOM进行变更后,希望及时通知到相关使用人员 (2&…...
最新研究!美国爱荷华州立大学利用量子计算模拟原子核
爱荷华州立大学物理学和天文学教授James Vary(图片来源:网络)美国爱荷华州立大学物理学和天文学教授James Vary和来自爱荷华州立大学、马萨诸塞州塔夫茨大学,以及美国能源部加利福尼亚州劳伦斯伯克利国家实验室的研究人员…...
零入门kubernetes网络实战-22->基于tun设备实现在用户空间可以ping通外部节点(golang版本)
《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 本篇文章主要是想做一个测试: 实现的目的是 希望在宿主机-1上,在用户空间里使用ping命令发起ping请求,产生的icmp类型的…...
web安全——Mybatis防止SQL注入 ssrf漏洞利用 DNS污染同源策略
目录 0x01 Mybatis防止SQL注入 0x02 sqlmap中报错注入判断 0x03 ssrf漏洞利用 0x04 SSRF重绑定 0x05 DNS污染...
smp_init过程解析
当你看到这样的log,会不会很慌张?竟然由CPU没有启动成功,除了什么故障?本文将结合我遇到的一个问题,将启动过程中bringup secondary cpu的过程分析一下。smp_init代码如下:602 void __init smp_init(void) …...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
