当前位置: 首页 > news >正文

磁盘性能概述与磁盘调度算法

目录

1. 磁盘性能概述

1. 数据传输速率

2. 寻道时间

3. 旋转延迟

4. 平均访问时间

2. 早期的磁盘调度算法

1. FIFO(First-In-First-Out)调度算法

2. SSTF(Shortest Seek Time First)调度算法

3. SCAN(Elevator Algorithm)调度算法

4. C-SCAN(Circular SCAN)调度算法

3. 基于扫描的磁盘调度算法

结论


        磁盘是计算机系统中用于存储数据的重要组件,其性能对系统整体性能有着直接的影响。磁盘性能的主要指标包括数据传输速率、寻道时间和旋转延迟。为了优化磁盘访问效率,磁盘调度算法应运而生。本文将对磁盘性能进行概述,并探讨早期和基于扫描的磁盘调度算法。

1. 磁盘性能概述

磁盘性能是衡量磁盘存储设备数据读写能力的重要指标。它直接影响计算机系统的整体性能,尤其是在数据密集型应用中。以下是磁盘性能的几个关键方面:

1. 数据传输速率

        数据传输速率是指磁盘在单位时间内可以传输的数据量,通常以 MB/s(兆字节每秒)为单位。这一指标直接影响文件传输的速度和系统响应时间。

  • 顺序读写:连续读取或写入大块数据,通常能达到较高的传输速率。
  • 随机读写:分散读取或写入小块数据,传输速率通常较低,因为需要频繁的寻道和旋转。

        示例:现代 SSD 的顺序读取速率可达 500 MB/s 以上,而传统 HDD 的顺序读取速率一般在 100 MB/s 左右。

// 数据传输速率示例
transferredData = readDataFromDisk(file);
timeElapsed = getElapsedTime();
dataTransferRate = transferredData / timeElapsed;  // 计算数据传输速率
2. 寻道时间

        寻道时间是指磁盘读写头移动到指定轨道位置所需的时间。寻道时间包括启动时间、加速时间、减速时间和稳定时间。寻道时间越短,磁盘性能越好。

  • 启动时间:读写头开始移动的时间。
  • 加速时间:读写头加速到指定轨道的时间。
  • 减速时间:读写头减速到指定轨道的时间。
  • 稳定时间:读写头在指定轨道上稳定下来的时间。

示例:高性能 HDD 的平均寻道时间通常在 5 - 10 毫秒,而 SSD 因为没有机械移动部件,寻道时间几乎为零。

 

// 寻道时间示例
startSeekTime = getCurrentTime();
moveReadWriteHeadToTrack(targetTrack);
endSeekTime = getCurrentTime();
seekTime = endSeekTime - startSeekTime;  // 计算寻道时间
3. 旋转延迟

        旋转延迟是指磁盘旋转到所需扇区所需的时间。旋转延迟与磁盘的转速成反比,转速越高,旋转延迟越短。

  • 转速:磁盘每分钟旋转的次数(RPM)。常见的转速有 5400 RPM、7200 RPM 和 10000 RPM。
  • 计算旋转延迟:平均旋转延迟 = 60 / (2 * RPM)。

示例:对于转速为 7200 RPM 的 HDD,平均旋转延迟约为 4.17 毫秒。

 

// 旋转延迟示例
rpm = 7200;
rotationDelay = 60 / (2 * rpm);  // 计算平均旋转延迟
4. 平均访问时间

        平均访问时间是寻道时间和旋转延迟之和,决定了磁盘一次数据访问所需的总时间。它是衡量磁盘响应速度的重要指标。

  • 计算平均访问时间:平均访问时间 = 寻道时间 + 旋转延迟。

示例:对于寻道时间为 9 毫秒、转速为 7200 RPM 的 HDD,平均访问时间约为 13.17 毫秒。

 

// 平均访问时间示例
seekTime = 9;  // 以毫秒为单位
rpm = 7200;
rotationDelay = 60 / (2 * rpm);
averageAccessTime = seekTime + rotationDelay;  // 计算平均访问时间

2. 早期的磁盘调度算法

        为了提高磁盘的访问效率,早期的磁盘调度算法被提出。这些算法主要关注如何优化寻道时间和旋转延迟。以下是几种常见的磁盘调度算法:

1. FIFO(First-In-First-Out)调度算法

        原理:按照请求到达的顺序进行处理,不进行任何优化。

优点

  • 简单易实现:实现逻辑非常简单,只需按照请求到达的顺序进行处理。
  • 公平性:每个请求都会按照到达顺序被处理,避免了请求的长时间等待。

缺点

  • 较高的寻道时间:在大量随机请求的情况下,磁头可能会频繁地在磁盘上来回移动,增加寻道时间。
  • 效率低下:由于没有优化,可能导致磁盘资源的低效利用。

示例

假设有以下请求队列:[98, 183, 37, 122, 14, 124, 65, 67],磁头初始位置在 50:

处理顺序为:50 -> 98 -> 183 -> 37 -> 122 -> 14 -> 124 -> 65 -> 67

2. SSTF(Shortest Seek Time First)调度算法

原理:优先处理与当前磁头位置距离最近的请求,以最小化寻道时间。

优点

  • 减少寻道时间:通过优先处理距离最近的请求,可以显著减少磁头的移动距离,提高磁盘访问效率。

缺点

  • 可能导致“饥饿”问题:某些请求可能会因为距离较远而长时间得不到处理,导致“饥饿”现象。

示例

假设有以下请求队列:[98, 183, 37, 122, 14, 124, 65, 67],磁头初始位置在 50:

  • 初始磁头位置为 50,最近的请求是 37。
  • 当前磁头位置为 37,最近的请求是 14。
  • 当前磁头位置为 14,最近的请求是 37。
  • 当前磁头位置为 37,最近的请求是 65。
  • 当前磁头位置为 65,最近的请求是 67。
  • 当前磁头位置为 67,最近的请求是 98。
  • 当前磁头位置为 98,最近的请求是 122。
  • 当前磁头位置为 122,最近的请求是 124。
  • 当前磁头位置为 124,最近的请求是 183。

处理顺序为:50 -> 37 -> 14 -> 65 -> 67 -> 98 -> 122 -> 124 -> 183

3. SCAN(Elevator Algorithm)调度算法

        原理:磁头在磁盘上来回移动,像电梯一样,在一个方向上处理所有请求,直到没有更多请求,然后改变方向。

优点

  • 减少整体寻道时间:通过在一个方向上处理所有请求,可以减少磁头的总移动距离。
  • 避免饥饿问题:所有请求最终都会被处理,因为磁头会来回移动。

缺点

  • 延迟某些请求:某些请求可能会因为磁头的移动方向而被延迟处理。

示例

假设有以下请求队列:[98, 183, 37, 122, 14, 124, 65, 67],磁头初始位置在 50,向上移动:

  • 当前磁头位置为 50,向上移动,处理 65
  • 当前磁头位置为 65,继续向上移动,处理 67
  • 当前磁头位置为 67,继续向上移动,处理 98
  • 当前磁头位置为 98,继续向上移动,处理 122
  • 当前磁头位置为 122,继续向上移动,处理 124
  • 当前磁头位置为 124,继续向上移动,处理 183
  • 到达最上端后,改变方向
  • 当前磁头位置为 183,向下移动,处理 37
  • 当前磁头位置为 37,继续向下移动,处理 14

处理顺序为:50 -> 65 -> 67 -> 98 -> 122 -> 124 -> 183 -> 37 -> 14

4. C-SCAN(Circular SCAN)调度算法

        原理:类似于SCAN,但在处理完一个方向的请求后,磁头直接返回到起始位置,而不是改变方向。这种方式提供了更一致的等待时间。

优点

  • 一致的等待时间:所有请求的等待时间更一致,因为磁头总是从一个方向处理请求。
  • 避免饥饿问题:所有请求最终都会被处理。

缺点

  • 增加不必要的移动:磁头在返回到起始位置时,可能会进行一些不必要的移动。

示例

假设有以下请求队列:[98, 183, 37, 122, 14, 124, 65, 67],磁头初始位置在 50,向上移动:

  • 当前磁头位置为 50,向上移动,处理 65
  • 当前磁头位置为 65,继续向上移动,处理 67
  • 当前磁头位置为 67,继续向上移动,处理 98
  • 当前磁头位置为 98,继续向上移动,处理 122
  • 当前磁头位置为 122,继续向上移动,处理 124
  • 当前磁头位置为 124,继续向上移动,处理 183
  • 到达最上端后,回到起始位置
  • 当前磁头位置为 0,向上移动,处理 14
  • 当前磁头位置为 14,继续向上移动,处理 37

处理顺序为:50 -> 65 -> 67 -> 98 -> 122 -> 124 -> 183 -> 0 -> 14 -> 37

3. 基于扫描的磁盘调度算法

基于扫描的磁盘调度算法进一步优化了磁盘访问效率,解决了早期算法的一些缺陷。

  • SCAN(电梯调度算法)

    • 原理:磁头像电梯一样在磁盘上进行来回扫描,当磁头移动到最远端时,方向反转。所有请求按照磁头当前方向顺序处理。
    • 优点:减少了请求的饥饿问题,提供了较好的寻道时间优化。
    • 缺点:在大量请求时仍可能有较长的等待时间。
  • C-SCAN(循环扫描调度算法)

    • 原理:磁头只在一个方向上处理请求,达到最远端后立即返回起始端并重新开始。未处理的请求在下一轮扫描中处理。
    • 优点:提供了更加均衡的等待时间,避免了SCAN算法中最远端请求等待时间过长的问题。
    • 缺点:磁头返回时不处理请求,可能会浪费一些时间。
  • LOOK 和 C-LOOK 算法

    • 原理:与SCAN和C-SCAN类似,不同之处在于磁头只在有请求的范围内移动,而不会移动到最远端。
    • 优点:进一步减少了不必要的磁头移动,提高了效率。
    • 缺点:实现复杂度稍高。

结论

        磁盘性能是影响计算机系统整体性能的重要因素,而磁盘调度算法在优化磁盘访问效率方面起着关键作用。从早期的FIFO和SSTF算法到基于扫描的SCAN、C-SCAN和LOOK算法,不同的调度算法各有优缺点。在实际应用中,应根据具体场景选择合适的调度算法,以最大化磁盘性能并提升系统响应速度。通过不断优化调度算法,现代计算机系统能够更高效地管理数据存储和访问,满足用户的需求。

相关文章:

磁盘性能概述与磁盘调度算法

目录 1. 磁盘性能概述 1. 数据传输速率 2. 寻道时间 3. 旋转延迟 4. 平均访问时间 2. 早期的磁盘调度算法 1. FIFO(First-In-First-Out)调度算法 2. SSTF(Shortest Seek Time First)调度算法 3. SCAN(Elevator…...

chrome浏览器设置--disable-web-security解决跨域

在开发人员于后台进行接口测试的时候,老是遇到跨域问题,这时前端总是会让后台添加跨域请求头来允许跨域请求,今天介绍一个简单的方法跨过这一步操作的设置。 –disable-web-security参数,禁用同源策略,利于开发人员本…...

Android中蓝牙设备的状态值管理

在Android中,蓝牙状态可以通过多种方式来描述,主要包括蓝牙适配器状态、蓝牙设备连接状态以及蓝牙广播状态,其关键的蓝牙状态实现类有BluetoothAdapter、BluetoothDevicePairer、BluetoothDevice、BluetoothProfile,详细介绍如下&…...

关于ReactV18的页面跳转传参和接收

一、使用路由方式进行传参和接收&#xff08;此处需使用 useNavigate 和 useParams 两个hooks&#xff09; 1 首先需要配置好路由形式如下 :id(参数) { path: "/articleDetail/:id", element: lazyElement(<ArticleDetail />), }, 2 传递参数 使用 useNaviga…...

南京观海微电子-----PCB设计怎样降低EMI

开关模式电源是AC-DC或DC-DC电源的通用术语&#xff0c;这些电源使用具有快速开关动作的电路进行电压转换/转换(降压或升压)。随着每天开发出更多的设备(潜在的EMI受害者)&#xff0c;克服EMI成为工程师面临的主要挑战&#xff0c;并且实现电磁兼容性(EMC)与使设备正常运行同等…...

黑苹果/Mac如何升级 Mac 新系统 Sequoia Beta 版

Mac升级教程 有必要提醒一下大家&#xff0c;开发者测试版系统一般是给开发者测试用的&#xff0c;可能存在功能不完善、部分软件不兼容的情况&#xff0c;所以不建议普通用户升级&#xff0c;如果实在忍不住&#xff0c;升级之前记得做好备份。 升级方法很简单&#xff1a; …...

2024年主流工单系统横向对比

一&#xff1a;智齿科技 智齿客服App可以接收工单、查看工单、分配工单、处理工单&#xff0c;客户问题随时随地快速解决。 与云客户中心实时连接&#xff0c;客户以往的浏览轨迹、聊天信息、通话记录、工单历史一目了然。 配合智齿云呼叫中心/机器人客服/人工在线客服&…...

实用软件下载:Studio One最新安装包及详细安装教程

Studio One 6是一款功能丰富、专业级的音乐制作软件&#xff0c;它具备灵活的工作流程和高效的团队协作能力&#xff0c;能帮助用户实现高质量的音乐创作和制作。 智能模板更快的启动&#xff0c;全新的智能模板为你手头的任务提供了必要的工具集&#xff0c;包括基本录制、混音…...

网络安全练气篇——常见服务端口对应漏洞

常见的端口所对应的已知漏洞 21 FTP服务的数据传输端口 22 FTP服务的连接端口&#xff0c;可能存在 弱口令暴力破解 389 LDAP目录访问协议&#xff0c;有可能存在注入、弱口令 443 HTTPS端口&#xff0c;心脏滴血等与SSL有关的漏洞 445 SMB服务端口&#xff0c;可能存…...

WPF学习(3)--不同类通过接口实现同种方法

一、接口概述 1.接口的概念 在C#中&#xff0c;接口&#xff08;interface&#xff09;是一种引用类型&#xff0c;它定义了一组方法、属性、事件或索引器&#xff0c;但不提供实现。接口只定义成员的签名&#xff0c;而具体的实现由实现接口的类或结构体提供。接口使用关键字…...

体验版小程序访问不到后端接口请求失败问题解决方案

文章目录 解决方案一&#xff1a;配置合法域名解决方案二&#xff1a;开发调试模式第一步&#xff1a;进入开发调试模式第二步&#xff1a;启用开发调试 注意事项结语 &#x1f389;欢迎来到Java面试技巧专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&…...

【Linux文件篇】磁盘到用户空间:Linux文件系统架构全景

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 前言&#xff1a;我们前面的博客中一直提到的是被进程打开的文件&#xff0c;而系统中不仅仅只有被打开的文件还有很多没被打开的文件。如果没有被打开&#xff0c;那么文件是在哪里进行保存的呢?那我们又如何快速定位…...

数据分析-Excel基础函数的使用

Excel基础函数&#xff1a; sum:求和 sumif:单条件求和 sumifs:多条件求和 subtotal:根据筛选求和 if:逻辑判断 vlookup:连接匹配数据 match:查找数值在区域中的位置 index:根据区域的位置返回数值 match、index:一起使用&#xff1a;自动根据列名查找数据 sumifs、match、ind…...

速盾的防护策略有哪些?

在当今数字化时代&#xff0c;网络安全至关重要&#xff0c;而速盾作为一款优秀的安全防护工具&#xff0c;拥有一系列全面且有效的防护策略。 首先&#xff0c;速盾采用了先进的访问控制策略。通过严格的身份验证和授权机制&#xff0c;确保只有合法的用户和应用程序能够访问特…...

LabVIEW RT在非NI硬件上的应用与分析

LabVIEW RT&#xff08;实时操作系统&#xff09;可运行在非NI&#xff08;National Instruments&#xff09;硬件上&#xff0c;如研华工控机&#xff0c;但需要满足特定硬件要求。本文从硬件要求、开发和运行差异、可靠性、稳定性、优势和成本等多角度详细分析在非NI硬件上运…...

使用Python批量处理Excel的内容

正文共&#xff1a;1500 字 10 图&#xff0c;预估阅读时间&#xff1a;1 分钟 在前面的文章中&#xff08;如何使用Python提取Excel中固定单元格的内容&#xff09;&#xff0c;我们介绍了如何安装Python环境和PyCharm工具&#xff0c;还利用搭好的环境简单测试了一下ChatGPT提…...

k8s+pv+pvc+nas 数据持久化volumes使用

1 k8s pod申请持久化卷配置 apiVersion: v1 kind: Service metadata:name: $IMG_NAMEnamespace: rz-dtlabels:app: $IMG_NAME spec:type: NodePortports:- port: 8091nodePort: 31082 #service对外开放端口selector:app: $IMG_NAME --- apiVersion: apps/v1 kind: Deployment …...

C++算法-青蛙跳台阶【面试】

"青蛙跳台阶"问题是一个经典的递归问题&#xff0c;也与斐波那契数列有关。问题是这样的&#xff1a;一只青蛙站在一个n阶台阶上&#xff0c;它每次可以跳1阶或2阶&#xff0c;问青蛙跳到顶端总共有多少种跳法。 这个问题可以用递归或动态规划来解决。以下是使用C实…...

px转rem插件postcss-plugin-px2rem使用方法(浏览器缩放页面自适应)

px转rem插件postcss-plugin-px2rem使用方法&#xff08;浏览器缩放页面自适应&#xff09; 1. 常见屏幕自适应的布局 百分比布局rem布局css媒体查询在前端框架设计初期&#xff0c;应优先选择好页面布局方式 2. postcss-plugin-px2rem插件的使用 官网地址&#xff1a;https…...

批量文件重命名技巧:轻松替换删除文件夹名中的字母,实现高效文件管理新境界

在数字化时代&#xff0c;我们每天都会面对大量的文件和文件夹。无论是工作文档、学习资料还是个人收藏&#xff0c;文件命名的规范性都显得尤为重要。然而&#xff0c;手动一个一个去修改文件名&#xff0c;不仅耗时耗力&#xff0c;还容易出错。那么&#xff0c;有没有一种方…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...