当前位置: 首页 > news >正文

曲线拟合 | 二次B样条拟合曲线

B 样条曲线拟合实例:能平滑化曲线

1. 实例1

为MASS包中mcycle数据集。它测试了一系列模拟的交通车事故中,头部的加速度,以此来评估头盔的性能。times为撞击时间(ms),accel为加速度(g)。首先导入数据,并绘制散点图

(1) 关键函数

# bs() ====
# bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
#   Boundary.knots = range(x))
#参数解释:
#x:自变量,这里为x
#df: 自由度(回归函数中的参数个数),默认为0,由于我们需要截距,
#  2.2 节中c中提到的公式减去1,因此自由度为4+3 = 7
#knots:节点的位置,这里为c(15,20,32,40)
#degree:q值,默认为3
#其他的参数保持默认即可

然后搭配lm 函数,即可画出样条函数曲线

(2) 代码

# Spline ====
x=mcycle$time
y=mcycle$accel
plot(x, y, type="p", pch=19, cex=0.5)library(splines)
#B = spline(y, n=3*length(y) )
#lines(B$x, B$y, lty=2, col="red")bspl <- lm(y~bs(x, df =7, #knots = c(15,20,32,40), degree=2))
lines(x, fitted(bspl),lwd = 2, col = 2)ref: https://blog.csdn.net/weixin_39642998/article/details/110705947

似乎不靠谱,需要自己指定锚点位置?去掉 knots 参数就好了。
请直接看2(2)

2. help 例子:更靠谱的方法

(1) 原例:不明显

require(stats); require(graphics)
head(women)
bs(women$height, df = 5)
summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))## example of safe prediction
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, length.out = 200)
lines(ht, predict(fm1, data.frame(height = ht)))

(2) 重做例1,模仿(1)

library(MASS)
head(mcycle)
x=mcycle$times
y=mcycle$accel#plot(x, y, pch=19, cex=0.5)
library(splines)
bs(y, df = 5)
summary(fm1 <- lm(y ~ bs(x, df = 7, degree = 2), data = NULL))## example of safe prediction
plot(mcycle, xlab = "times", ylab = "accel", pch=19, cex=0.5)
x_2 <- seq(min(x), max(x), length.out = 200)
lines(x_2, predict(fm1, data.frame(x = x_2)), lwd=2, col="red")

目测效果很好!
参数解释:
df=7,有大概7个控制点,越多拟合越好;太多就会过拟合!
degree=3,次数。

在这里插入图片描述

相关文章:

曲线拟合 | 二次B样条拟合曲线

B 样条曲线拟合实例&#xff1a;能平滑化曲线 1. 实例1 为MASS包中mcycle数据集。它测试了一系列模拟的交通车事故中&#xff0c;头部的加速度&#xff0c;以此来评估头盔的性能。times为撞击时间(ms)&#xff0c;accel为加速度&#xff08;g&#xff09;。首先导入数据&#…...

delphi FDMemTable1.SourceView遍历各行数据,取任意行数据无需Next移动指针了。TFDDatSView

for m : 0 to FDMemTable1.SourceView.Rows.Count - 1 do begin if FDMemTable_SP.SourceView.Rows.ItemsI[m].GetData(0) varNull then Continue; end; 9行7列的值。 FDMemTable1.Data.DataView.Rows.ItemsI[9].ValueI[7]; FDMemTable1.Table.Ro…...

为什么选择 ABBYY FineReader PDF ?

帮助用户们对PDF文件进行快速的编辑处理&#xff0c;同时也可以快速识别PDF文件里的文字内容&#xff0c;并且可以让用户们进行文本编辑&#xff0c;所以可以有效提升办公效率。 ABBYY-ABBYY Finereader 15 Win-安装包&#xff1a;https://souurl.cn/OY2L3m 高级转换功能 ABBY…...

php遇到的问题

1、 underfined at line 3 in xxx.php , 错误提示&#xff0c;注释这行代码 // error_reporting(DEBUG ? E_ALL : 0); 目录&#xff1a;config/config.php...

零基础入门学用Arduino 第二部分(二)

重要的内容写在前面&#xff1a; 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后&#xff0c;整体感觉是很好的&#xff0c;如果有条件的可以先学习一些相关课程&#xff0c;学起来会更加轻松&#xff0c;相关课程有数字电路…...

旅游行业电商平台:数字化转型的引擎与未来发展趋势

引言 旅游行业数字化转型的背景和重要性 随着信息技术的飞速发展&#xff0c;数字化转型成为各行业发展的必然趋势。旅游行业&#xff0c;作为一个高度依赖信息和服务的领域&#xff0c;数字化转型尤为重要。通过数字化手段&#xff0c;旅游行业能够实现资源的高效配置、服务的…...

Ubuntu 22.04安装 docker

安装过程和指令 # 1.升级 apt sudo apt update # 2.安装docker sudo apt install docker.io docker-compose # 3.将当前用户加入 docker组 sudo usermod -aG docker ${USER} # 4. 重启 # 5. 查看镜像 docker ps -a 或者 docker images # 6. 下载镜像 docker pull hello-world …...

【Gitlab】访问默认PostgreSQL数据库

本地访问PostgreSQL gitlab有可以直接访问内部PostgreSQL的命令 sudo gitlab-rails dbconsole # 或者 sudo gitlab-psql -d gitlabhq_production效果截图 常用SQL # 查看用户状态 select id,name,email,state,last_sign_in_at,updated_at,last_credential_check_at,last_act…...

乐鑫ESP32-C3芯片应用,启明云端WT32C3-S5模组:简化产品硬件设计

在数字化浪潮的推动下&#xff0c;物联网(IoT)正迅速成为连接现实世界与数字世界的桥梁。芯片作为智能设备的心脏&#xff0c;其重要性不言而喻。 乐鑫推出的ESP32-C3芯片以其卓越的性能和丰富的功能&#xff0c;为智能物联网领域带来了新的活力&#xff0c;我将带您深入了解这…...

算法刷题【二分法】

题目&#xff1a; 注意题目中说明了数据时非递减的&#xff0c;那么这样就存在二分性&#xff0c;能够实现logn的复杂度。二分法每次只能取寻找特定的某一个值&#xff0c;所以我们要分别求左端点和有端点。 分析第一组用例得到结果如下: 成功找到左端点8 由此可知&#xff0…...

.NET MAUI Sqlite程序应用-数据库配置(一)

项目名称:Ownership&#xff08;权籍信息采集&#xff09; 一、安装 NuGet 包 安装 sqlite-net-pcl 安装 SQLitePCLRawEx.bundle_green 二、创建多个表及相关字段 Models\OwnershipItem.cs using SQLite;namespace Ownership.Models {public class fa_rural_base//基础数据…...

基于WPF技术的换热站智能监控系统09--封装水泵对象

1、添加用户控件 2、编写水泵UI 控件中用到了Viewbox控件&#xff0c;Viewbox控件是WPF中一个简单的缩放工具&#xff0c;它可以帮助你放大或缩小单个元素&#xff0c;同时保持其宽高比。通过样式和属性设置&#xff0c;你可以创建出既美观又功能丰富的用户界面。在实际开发中…...

GLM+vLLM 部署调用

GLMvLLM 部署调用 vLLM 简介 vLLM 框架是一个高效的大型语言模型&#xff08;LLM&#xff09;推理和部署服务系统&#xff0c;具备以下特性&#xff1a; 高效的内存管理&#xff1a;通过 PagedAttention 算法&#xff0c;vLLM 实现了对 KV 缓存的高效管理&#xff0c;减少了…...

leetcode 122 买卖股票的最佳时机||(动态规划解法)

题目分析 题目描述的已经十分清楚了&#xff0c;不做过多阐述 算法原理 状态表示 我们假设第i天的最大利润是dp[i] 我们来画一下状态机 有两个状态&#xff0c;买入后和卖出后&#xff0c;我们就可以使用两个dp表来解决问题 f[i]表示当天买入后的最大利润 g[i]表示当天卖出…...

C++设计模式---组合模式

1、介绍 组合模式&#xff08;Composite&#xff09;是一种结构型设计模式&#xff0c;也被称为部分-整体模式。它将复杂对象视为由多个简单对象&#xff08;称为“组件”&#xff09;组成的树形结构&#xff0c;这些组件能够共享相同的行为。每个组件都可能包含一个或多个子组…...

工厂方法模式(大话设计模式)C/C++版本

工厂方法模式 C 参考&#xff1a;https://www.cnblogs.com/Galesaur-wcy/p/15926711.html #include <iostream> #include <memory> using namespace std;// 运算类 class Operation { private:double _NumA;double _NumB;public:void SetNumA(){cout << &…...

[NCTF 2018]flask真香

打开题目后没有提示框&#xff0c;尝试扫描后也没有什么结果&#xff0c;猜想是ssti。所以尝试寻找ssti的注入点并判断模版。 模版判断方式&#xff1a; 在url地址中输入{7*7} 后发现不能识别执行。 尝试{{7*7}} ,执行成功&#xff0c;继续往下走注入{{7*7}}&#xff0c;如果执…...

性能测试3【搬代码】

1.Linux服务器性能分析命令及详解 2.GarafanainfluxDB监控jmeter数据 3.GarafanaPrometheus监控服务器和数据库性能 4.性能瓶颈分析以及性能调优方案详解 一、无界面压测时&#xff0c; top load average:平均负载 htop 二、Garafana监控平台 传统项目&#xff1a;centosphpm…...

<tesseract><opencv><Python>基于python和opencv,使用ocr识别图片中的文本并进行替换

前言 本文是在python中,利用opencv处理图片,利用tesseractOCR来识别图片中的文本并进行替换的一种实现方法。 环境配置 系统:windows 平台:visual studio code 语言:python 库:pyqt5、opencv、tesseractOCR 代码介绍 本文程序功能实现,主要依赖于tesseractOCR这个库,…...

海南云亿商务咨询有限公司解锁抖音电商新纪元

在当今数字化浪潮中&#xff0c;抖音电商以其独特的魅力和强大的用户基础&#xff0c;迅速成为企业营销的新宠。海南云亿商务咨询有限公司&#xff0c;作为专注于抖音电商服务的领先企业&#xff0c;凭借专业的团队和丰富的经验&#xff0c;为众多企业提供了高效、精准的电商服…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...