使用Python和TCN进行时间序列预测:一个完整的实战示例
使用Python和TCN进行时间序列预测:一个完整的实战示例
时间卷积网络(TCN)已被证明在处理序列数据方面表现出色,尤其是在需要捕获长期依赖关系的任务中。在本文中,我们将通过一个简单的例子,展示如何使用Python和TCN进行时间序列预测。这个例子将涉及生成模拟数据、构建TCN模型,并进行训练和预测的整个过程。
一、生成模拟数据
首先,我们需要创建一些合成数据来模拟一个时间序列。在这个例子中,我们将生成一个简单的正弦波数据,用于后续的训练和测试。
import numpy as np
import matplotlib.pyplot as plt# 生成正弦波数据
def generate_sine_wave(seq_length):x = np.arange(seq_length)return np.sin(0.1 * x) # 每隔0.1产生一个新的正弦点seq_length = 800
data = generate_sine_wave(seq_length)# 可视化数据
plt.figure(figsize=(10, 5))
plt.plot(data, label='Sine Wave')
plt.title("Generated Sine Wave Data")
plt.xlabel("Time")
plt.ylabel("Value")
plt.legend()
plt.show()
这段代码生成了一个长度为800的正弦波序列,并进行了可视化。
二、准备训练数据
在准备训练数据时,我们需要将连续的时间序列数据转换为模型可以处理的格式。我们将使用过去的N个数据点预测下一个数据点。
def create_sequences(data, seq_length):xs = []ys = []for i in range(len(data)-seq_length-1):x = data[i:(i+seq_length)]y = data[i+seq_length]xs.append(x)ys.append(y)return np.array(xs), np.array(ys)seq_length = 20 # 使用过去20个点预测下一个点
X, y = create_sequences(data, seq_length)
X = X.reshape((X.shape[0], X.shape[1], 1)) # TCN需要的输入格式
三、构建TCN模型
我们将使用keras-tcn
库来构建和训练我们的TCN模型。如果您还没有安装这个库,请使用pip install keras-tcn
安装。
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tcn import TCNbatch_size, timesteps, input_dim = None, seq_length, 1i = Input(batch_shape=(batch_size, timesteps, input_dim))
o = TCN(return_sequences=False)(i) # TCN层
o = Dense(1)(o) # 回归任务
model = Model(inputs=[i], outputs=[o])model.compile(optimizer='adam', loss='mse')
model.summary()
四、训练模型
现在我们可以使用生成的数据训练模型了。
model.fit(X, y, epochs=30, batch_size=32)
五、模型预测和结果可视化
最后,我们可以使用训练好的模型进行预测,并将预测结果与实际数据进行对比。
predicted = model.predict(X)plt.figure(figsize=(10, 5))
plt.plot(data[seq_length:], label='Actual Data')
plt.plot(predicted, label='Predicted Data')
plt.title("Comparison of Predictions and Actual Data")
plt.xlabel("Time")
plt.ylabel("Value")
plt.legend()
plt.show()
结论
这个示例展示了如何从头开始使用TCN进行时间序列预测。虽然我们使用的是生成的数据,但同样的方法可以应用于实际的时间序列数据集,如股票价格、气温记录等。TCN的优势在于其能够捕获长期依赖关系,这使其在复杂的序列预测任务中尤为有用。通过适当的调整和优化,TCN可以成为处理各种时间序列预测问题的强大工具。
相关文章:

使用Python和TCN进行时间序列预测:一个完整的实战示例
使用Python和TCN进行时间序列预测:一个完整的实战示例 时间卷积网络(TCN)已被证明在处理序列数据方面表现出色,尤其是在需要捕获长期依赖关系的任务中。在本文中,我们将通过一个简单的例子,展示如何使用Py…...

如何用R语言ggplot2画高水平期刊散点图
文章目录 前言一、数据集二、ggplot2画图1、全部代码2、细节拆分1)导包2)创建图形对象3)主题设置4)轴设置5)图例设置6)散点颜色7)保存图片 前言 一、数据集 数据下载链接见文章顶部 处理前的数据…...

Python基于 Jupyter Notebook 的图形可视化工具库之ipysigma使用详解
概要 在数据科学和网络分析中,图(Graph)结构是一种常用的数据结构,用于表示实体及其关系。为了方便图数据的可视化和交互操作,ipysigma 提供了一个基于 Jupyter Notebook 的图形可视化工具。通过 ipysigma,用户可以在 Jupyter Notebook 中创建、编辑和展示图结构,方便进…...

四叉树和KD树
1. 简介 四叉树和KD树都是用于空间数据索引和检索的树状数据结构。它们通过将空间递归地划分为更小的区域,并存储每个区域内的点,来实现快速搜索和范围查询。 2. 四叉树 2.1 定义 四叉树是一种树状数据结构,它将二维空间递归地划分为四个…...

C语言中结构体使用.与->访问成员变量的区别
文章目录 前言点运算符(.)箭头运算符(->)总结 前言 在C语言中,. 和 -> 都是用来访问结构体成员的运算符,但它们的使用场景和含义有所不同。 提示:以下是本篇文章正文内容,下面…...

计算机二级Access选择题考点
在Access中,若要使用一个字段保存多个图像、图表、文档等文件,应该设置的数据类型是附件。在“销售表"中有字段:单价、数量、折扣和金额。其中,金额单价x数量x折扣,在建表时应将字段"金额"的数据类型定义为计算。若…...

人工智能历史与现状
1 人工智能历史与现状 1.1 人工智能的概念和起源 1.1.1 人工智能的概念 人工智能 (Artificial Intelligence ,AI)是一门研究如何使计算机 能够模拟人类智能行为的科学和技术,目标在于开发能够感知、理解、 学习、推理、决策和解决问题的智能机器。人工智能的概念主要包含 以…...

【git使用一】windows下git下载、安装和卸载
目录 (1)下载安装包 (2)安装git (3)安装验证 (4)卸载git (1)下载安装包 官网下载地址:Git 国内镜像下载地址:CNPM Binaries Mir…...

JVM 类加载器的工作原理
JVM 类加载器的工作原理 类加载器(ClassLoader)是一个用于加载类文件的子系统,负责将字节码文件(.class 文件)加载到 JVM 中。Java 类加载器允许 Java 应用程序在运行时动态地加载、链接和初始化类。 2. 类加载器的工…...

ARM Cortex-M4 CPU指令大全:作用、原理与实例
引言 在计算机系统中,CPU(中央处理器)是执行各种指令的核心部件。ARM Cortex-M4是广泛应用于嵌入式系统中的一款处理器,其指令集架构(ISA)基于ARMv7-M。本文将介绍ARM Cortex-M4处理器中的常见指令&#x…...

Mysql学习(九)——存储引擎
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 七、存储引擎7.1 MySQL体系结构7.2 存储引擎简介7.3 存储引擎特点7.4 存储引擎选择7.5 总结 七、存储引擎 7.1 MySQL体系结构 连接层:最上层是一些客户…...

TFT屏幕波形显示
REVIEW 关于TFT显示屏,之前已经做过彩条显示: TFT显示屏驱动_tft驱动-CSDN博客 关于ROM IP核,以及coe文件生成: FPGA寄存器 Vivado IP核_fpga寄存器资源-CSDN博客 1. TFT屏幕ROM显示正弦波 ①生成coe文件 %% sin-cos wave dat…...

服务器无法远程桌面连接不上的问题排查与解决方案
一、问题概述 当尝试使用远程桌面协议(RDP)连接至服务器时,如果连接失败,这通常意味着存在一些配置问题、网络问题或服务器本身的问题。此类问题对于管理员而言,需要系统地进行排查和解决。 二、排查步骤 1. 检查网…...

JAVA面试题整理——内存溢出与内存泄露的区别与联系
内存溢出与内存泄露的区别与联系 在前面jvm学习整理的时候其实用过一个简单的例子了解过内存溢出,在jvm内存模型章节下,大家有兴趣的可以去看看:JVM初学 GC_knowwait的博客-CSDN博客 内存溢出 内存溢出(out of memory)…...

L50--- 104. 二叉树的最大深度(深搜)---Java版
1.题目描述 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.思路 这个二叉树的结构如下: 根节点 1 左子节点 2 右子节点 3 左子节点 4 计算过程 从根节点 1 开始计算: 计算左子树的最大深度: 根节点 2…...

Linux 中 “ 磁盘、进程和内存 ” 的管理
在linux虚拟机中也有磁盘、进程、内存的存在。第一步了解一下磁盘 一、磁盘管理 (1.1)磁盘了解 track( 磁道 ) :就是磁盘上的同心圆,从外向里,依次排序1号,2号磁盘........等等。…...

test_pipeline
test_pipeline 是一个测试管道(test pipeline)的定义。 在计算机视觉任务中,通常需要对输入图像进行一系列的预处理操作,以便将其适配到模型的输入要求或提高模型的性能。测试管道就是用于定义这些预处理操作的一系列步骤。 在给…...

使用甲骨文云arm服务器安装宝塔时nginx无法卸载
使用甲骨文云arm服务器安装宝塔 其他环境都能安装上 唯独nginx安装完不运行 卸载了几次以后还无法卸载了. 修复 重启都不行. 差点就重建主机了. 最后靠下面的命令 就卸载掉了 然后重装就把nginx安装好了 mv /www/server/nginx/sbin/nginx /tmp/nginx_back mv /etc/in…...

C++青少年简明教程:C++的指针入门
C青少年简明教程:C的指针入门 说到指针,就不可能脱离开内存。了解C的指针对于初学者来说可能有些复杂,我们可以试着以一种简单、形象且易于理解的方式来解释: 首先,我们可以将计算机内存想象成一个巨大的有许多格子的…...

Apache Doris 基础 -- 数据表设计(分层存储)
1、应用场景 未来一个重要的用例是类似于ES日志存储,其中日志场景中的数据是根据日期分割的。许多数据都是查询不频繁的冷数据,因此需要降低此类数据的存储成本。考虑到节约成本: 来自不同厂商的常规云磁盘的定价比对象存储更昂贵。Doris 集群实际在线…...

使用Spring Boot设计一套BI系统
商业智能(Business Intelligence,简称BI)系统是一种将数据转化为可操作信息,帮助企业进行决策支持的技术与工具的集合。随着大数据时代的到来,BI系统在企业中的应用变得越来越广泛。本文旨在探讨如何使用Spring Boot框…...

2024.6.12总结
今天是排毕业照的日子,拍照的时候并没有太过兴奋。后来受到主管说明天就能签offer了,这才喜极而泣。 自从得知自己面试通过后,我是非常高兴,开始幻想着今后的生活。可是,后面在等offer的过程中,我是无比的…...

1027 - 求任意三位数各个数位上数字的和
问题描述 对于一个任意的三位自然数 x ,编程计算其各个数位上的数字之和 S 。 输入 输入一行,只有一个整数 x(100≤x≤999) 。 输出 输出只有一行,包括 1 个整数。 样例 输入 123 输出 6 以下是C实现的代码: 代码1 #…...

K8s 卷快照类
卷快照类 卷快照类 这个警告信息通常出现在使用 kubectl 删除 Kubernetes 集群资源时,如果尝试删除的是集群作用域(cluster-scoped)的资源,但指定了命名空间(namespace),就会出现这个警告。 集…...

从零手写实现 nginx-23-directive IF 条件判断指令
前言 大家好,我是老马。很高兴遇到你。 我们为 java 开发者实现了 java 版本的 nginx https://github.com/houbb/nginx4j 如果你想知道 servlet 如何处理的,可以参考我的另一个项目: 手写从零实现简易版 tomcat minicat 手写 nginx 系列 …...

08_基于GAN实现人脸图像超分辨率重建实战_超分辨基础理论
1. 超分辨的概念与应用 我们常说的图像分辨率指的是图像长边像素数与图像短边像素数的乘积,比如iPhoneX手机拍摄照片的分辨率为 4032px3024px,为1200万像素。 显然,越高的分辨率能获得更清晰的成像。与之同时,分辨率越高也意味着更大的存储空间,对于空间非常有限的移动设…...

React.ReactElement 与 React.ReactNode
React.ReactNode 在 JSX 中作为子元素传递的所有可能类型的并集,这是对子元素的一个非常宽泛的定义。 <RNode><p>One element</p></RNode><RNode><><p>Fragments for</p><p>More elements</p></&g…...

深度解析服务发布策略之蓝绿发布
目录 什么是蓝绿发布 蓝绿发布的优点 蓝绿发布的缺点 蓝绿发布的实现步骤 小结 在软件开发和运维中,发布新版本是一个风险较高的操作。为了降低风险,提高发布的稳定性和可靠性,通常会采取一系列的技术策略。其中蓝绿发布(Blu…...

【Mysql】 深入理解MySQL的执行计划
文章目录 前言一、字段解释二、代码实现三、总结 前言 在日常的数据库操作中,我们经常会遇到一些复杂的查询,这些查询可能会涉及到多个表的联合查询,或者是一些复杂的条件筛选。为了更好地理解和优化这些查询,了解MySQL的执行计划…...

说下你对Spring IOC 的理解
说下你对Spring IOC 的理解 1. Spring IOC是一个管理对象之间依赖关系的容器,它实现了依赖注入技术,可以解决传统的紧耦合问题,降低了项目维护难度。 2. Spring IOC将对象之间的依赖关系交由容器来管理对象,开发者只需要告诉容器…...