【算法-力扣】72. 编辑距离(动态规划)
目录
一、题目描述
二、解题思路
三、参考答案
一、题目描述
编辑距离
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
二、解题思路
1、首先确定DP数组以及它的含义
这里我们使用一个二维的DP数组dp[i][j],此时dp[i][j]就表示word1和word2对应的i和j位置结束的时候转换后的最少操作次数。比如word1为abc,word2为dcdb,则dp[1][3]就表示ab转换成dcdb的最少转换次数。这个dp[i][j]的含义一定要记住,不然后面再推导递推公式的时候就很容易把自己绕晕!
2、如何初始化dp数组
首先我们要确定,我们要初始化dp数组的哪些位置。因为我们的dp[i][j]表示的是word1和word2对应的i和j位置结束的时候转换后的最少操作次数。所以,最终的我们要的结果也就是dp二维数组的最后一个元素。
所以,这里我们需要初始化dp数组的第一行和第一列。这样,最终我们才能根据第一行和第一列的数据来推导出来最终的结果。
那么,问题来了,我们该如何初始化第一行和第一列的数据呢?
比如,word1为abc,word2为dcdb。我们初始化第一行的时候,那就是要求出a分别转换成d、dc、dcd、dcdb时的最少操作次数。显然这样初始化是非常麻烦的,甚至是不可完成的!那么我们再假设word1为zabc,word2为zdcdb。此时我们初始化第一行的时候,则就是求z分别转换成z、zd、zdc、zdcd、zdcdb时的最少操作次数。显然这个时候就很简单了对应最少操作次数其实就是j的值。
那么,灵感来了!
我们只要对word1和word2分别在它的首位置都添加一个相同的字符就行了!因为两个字符相同,所以不会影响我们最终的结果的。此时初始化dp数组就如下:
// 初始化第一行for (int j = 0; j < n; j++)dp[0][j] = j;// 初始化第一列for (int i = 0; i < m; i++)dp[i][0] = i;
注:m是word1单词的长度,n是word2单词的长度。
3、确定递推公式
- 当前遍历的dp[i][j]对应word1和word2位置上的字符相等的时候
dp[i][j] = dp[i-1][j-1]
此时不需要任何操作,所以此时的 dp[i][j] = dp[i-1][j-1]
- 当前遍历的dp[i][j]对应word1和word2位置上的字符不相等的时候,此时就需要进行操作
1)插入、删除
插入和删除操作是等价的,比如a和ab我们删除b和添加b操作次数都是一样的。所以这里我们只考虑删除即可。删除有可能删除word1的i位置的元素,也有可能删除word2的j位置的元素,删除word1和删除word2对应的操作次数是不一样的,所以需要比较出一个操作次数少的。
删除word1的i位置的元素:dp[i][j] = dp[i-1][j]+1
删除word2的j位置的元素:dp[i][j] = dp[i][j-1]+1
此时在当前操作下的最少操作次数就是:
dp[i][j] = Math.min(dp[i-1][j]+1, dp[i][j-1]+1);
如果此时有点晕,一定要再想dp[i][j]代表的是什么!
2)替换
替换也就是将word1在i位置的字符替换成word2在j位置的字符或者是将word2在j位置的字符替换成word1在i位置的字符。不管它俩谁替换谁,我们最终关心的只是操作次数。所以,这里也就是1次操作。所以,我们只要在它们俩前一个位置上的时的最少操作次数上面加1,也就是word1和word2在当前位置和当前替换操作下的最少操作次数了。
dp[i][j] = dp[i-1][j-1]+1
最后,我们求出这些操作中哪个操作次数最少,也就是我们最终该位置上的最少操作次数了。也就是在word1和word2在i和j位置上的字符不相等的时候的递推公式了。
dp[i][j] = Math.min( dp[i-1][j-1]+1, Math.min(dp[i-1][j]+1, dp[i][j-1]+1));
三、参考答案
class Solution {public int minDistance(String word1, String word2) {// 两个字符串前面都加个空字符串,方便后续初始化二维dp数组word1 = " " + word1;word2 = " " + word2;char[] word1Array = word1.toCharArray();char[] word2Array = word2.toCharArray();int m = word1Array.length, n = word2Array.length;// 定义一个dp二维数组,dp[i][j]表示word1和word2对应的i和j位置的时候最少操作次数int[][] dp = new int[m][n];// 初始化dp数组// 初始化第一行for (int j = 0; j < n; j++)dp[0][j] = j;// 初始化第一列for (int i = 0; i < m; i++)dp[i][0] = i;// 遍历for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {// 当当前位置相等的时候if (word1Array[i] == word2Array[j]) {dp[i][j] = dp[i - 1][j - 1];} else { // 不相等的时候需要处理dp[i][j] = Math.min(Math.min(dp[i][j-1],dp[i-1][j-1]),dp[i-1][j])+1;}}}return dp[m-1][n-1];}
}
以上就是使用动态规划解决力扣上72题编辑距离的方法。通过使用动态规划,我们可以高效地解决这个问题,时间复杂度为O(m*n),其中m和n分别是字符串word1和word2的长度。编辑距离是一个非常有意义的问题,掌握了解决方法后,我们就可以将其应用到各种实际问题中,提高算法的效率。编辑距离在我们的实际开发中有很多的应用场景,比如拼写纠错、数据对齐、抄袭侦测等。
相关文章:

【算法-力扣】72. 编辑距离(动态规划)
目录 一、题目描述 二、解题思路 三、参考答案 一、题目描述 编辑距离 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1&#…...

Spring 系统架构图
Spring 系统架构图 Spring Framework是Spring生态圈中最基础的项目,是其他项目的根基。 Spring Framework的发展也经历了很多版本的变更,每个版本都有相应的调整 Spring Framework的5版本目前没有最新的架构图,而最新的是4版本,…...

同三维T80005EHS-4K60 4K60 HDMI/SDI编码器
1路4K60 HDMI或12G SDI输入,2路3.5MM音频输入,对应HDMI或SDI,1个USB口和1个SD卡槽,可录像到U盘/移动硬盘/SSD硬盘/TF卡 产品简介: 同三维T80005EHS-4K60 4K60HDMI/SDI H.265编码器采用最新高效H.265高清数字视频压缩…...

React state(及组件) 的保留与重置
当在树中相同的位置渲染相同的组件时,React 会一直保留着组件的 state return (<div><Counter />{showB && <Counter />} </div> ) // 当 showB 为 false, 第二个计数器停止渲染,它的 state 完全消失了。这是因为 React…...
flask返回的数据怎么是转义后的字符串啊
Flask在返回JSON数据时,默认情况下会对特殊字符进行转义,以确保数据能安全地在HTML页面中展示,避免XSS(跨站脚本攻击)等安全问题。如果不希望Flask对JSON响应中的字符串自动转义,通常是因为你希望在前端直接使用这些数据(例如作为JavaScript的一部分),那么需要确保数据…...

C++17并行算法与HIPSTDPAR
C17 parallel algorithms and HIPSTDPAR — ROCm Blogs (amd.com) C17标准在原有的C标准库中引入了并行算法的概念。像std::transform这样的并行版本算法保持了与常规串行版本相同的签名,只是增加了一个额外的参数来指定使用的执行策略。这种灵活性使得已经使用C标准…...
【什么是几度cms,主要功能有什么】
几度CMS内容管理框架是基于 PHP 语言采用最新 Thinkphp 作为开发框架生产的网站 内容管理框架,提供“电脑网站 手机网站 多终端 APP 接口”一体化网站技术解 决方案。她拥有强大稳定底层框架,以灵活扩展为主的开发理念,二次开发方便且…...

组合和外观模式
文章目录 组合模式1.引出组合模式1.院系展示需求2.组合模式基本介绍3.组合模式原理类图4.解决的问题 2.组合模式解决院系展示1.类图2.代码实现1.AbsOrganizationComponent.java 总体抽象类用于存储信息和定义方法2.University.java 第一层,University 可以管理 Coll…...
设置服务器禁止和ip通信
要禁止服务器与特定 IP 地址的通信,可以使用防火墙来设置规则。在 Ubuntu 上,iptables 是一个常用的防火墙工具。以下是使用 iptables 设置禁止与特定 IP 通信的步骤: 阻止所有进出的通信 如果你想阻止服务器与特定 IP 地址的所有通信&…...
中文技术文档的写作规范(搬运)
阮一峰老师的《中文技术文档的写作规范》搬运。 链接指路: https://github.com/ruanyf/document-style-guide/tree/master 内容:对中文技术文档从标题、文本、段落、数值、标点符号、文档体系、参考链接等七大方面进行了简明扼要的介绍。...

「实战应用」如何用DHTMLX将上下文菜单集成到JavaScript甘特图中(一)
DHTMLX Gantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表。可满足项目管理应用程序的所有需求,是最完善的甘特图图表库。 DHTMLX Gantt是一个高度可定制的工具,可以与项目管理应用程序所需的其他功能相补充。在本文中您将学习如何使用自定义上…...

Python使用策略模式生成TCP数据包
使用策略模式(Strategy Pattern)来灵活地生成不同类型的TCP数据包。 包括三次握手、数据传输和四次挥手。 from scapy.all import * from scapy.all import Ether, IP, TCP, UDP, wrpcap from abc import ABC, abstractmethodclass TcpPacketStrategy(A…...

无文件落地分离拆分-将shellcode从文本中提取-file
马子分为shellcode和执行代码. --将shellcode单独拿出,放在txt中---等待被读取执行 1-cs生成python的payload. 2-将shellcode进行base64编码 import base64code b en_code base64.b64encode(code) print(en_code) 3-将编码后的shellcode放入文件内 4-读取shellcod…...

MySQL 日志(一)
本篇主要介绍MySQL日志的相关内容。 目录 一、日志简介 常用日志 一般查询日志和慢查询日志的输出形式 日志表 二、一般查询日志 三、慢查询日志 四、错误日志 一、日志简介 常用日志 在MySQL中常用的日志主要有如下几种: 这些日志通常情况下都是关闭的&a…...
XML 编辑器:功能、选择与使用技巧
XML 编辑器:功能、选择与使用技巧 简介 XML(可扩展标记语言)是一种用于存储和传输数据的标记语言。由于其灵活性和广泛的应用,XML编辑器成为开发者、数据管理者和内容创作者的重要工具。本文将探讨XML编辑器的功能、选择标准以及…...
单例模式(设计模式)
文章目录 概述1. 饿汉式(hungry Initialization)2. 懒汉式(Lazy Initialization)3.双重检查锁定(Double-Checked Locking)4. 静态内部类(Static Inner Class)5. 枚举(Enu…...

提升你的编程体验:自定义 PyCharm 背景图片
首先,打开 PyCharm 的设置菜单,点击菜单栏中的 File > Settings 来访问设置,也可以通过快捷键 CtrlAItS 打开设置。 然后点击Appearance & Behavior > Appearance。 找到Background image...左键双击进入。 Image:传入自己需要设置…...
SpringCloud与Dubbo区别?
相同点: dubbo与springcloud都可以实现RPC远程调用。 dubbo与springcloud都可以使用分布式、微服务场景下。 区别: dubbo有比较强的背景,在国内有一定影响力。 dubbo使用zk或redis作为作为注册中心 springcloud使用eureka作为注册中心 dubbo支持多种协议,默认使用…...

简单Mesh多线程合并,使用什么库性能更高
1)简单Mesh多线程合并,使用什么库性能更高 2)Unity Semaphore.WaitForSignal耗时高 3)VS编辑的C#代码注释的中文部分乱码 4)变量IntPtr m_cachePtr切换线程后变空 这是第389篇UWA技术知识分享的推送,精选了…...

长亭培训加复习安全产品类别
下面这个很重要参加hw时要问你用的安全产品就有这个 检测类型产品 偏审计 安全防御类型 EDR类似于杀毒软件 安全评估 任何东西都要经过这个机械勘察才能上线 安全管理平台 比较杂 比较集成 审计 漏扫 评估 合在这一个平台 也有可能只是管理 主机理解为一个电脑 安了终端插件…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...