当前位置: 首页 > news >正文

第十四届蓝桥杯模拟赛(第三期)Python

1 进制转换

问题描述
  请找到一个大于 2022 的最小数,这个数转换成十六进制之后,所有的数位(不含前导 0)都为字母(A 到 F)。
  请将这个数的十进制形式作为答案提交。

答案:2730

def check(num):t = []while num:k = num % 16t.append(chr(k + ord('0') if k < 10 else ord('A')))num //= 16if ''.join(t).isalpha():return Trueelse:return False

2 思维

问题描述
  在 Excel 中,列的名称使用英文字母的组合。前 26 列用一个字母,依次为 A 到 Z,接下来 26*26 列使用两个字母的组合,依次为 AA 到 ZZ。
  请问第 2022 列的名称是什么?
A ~ Z
AA ~ ZZ: AA ~ AZ BA ~ BZ CA ~ CZ
AAA ~ ZZZ: AAA ~ AAZ …
答案:BYU

t = 2022 - 26 - 26 * 26
div, mod = divmod(t, 26 * 26)
a, b = divmod(mod, 26)
print(div, mod)
print(a, b)
print(chr(ord('A') + a), chr(ord('A') + b))
# 验证
print(26 + 26 * 26 + 26 * 26 + 24 * 26 + 20)

3 日期问题

问题描述
  对于一个日期,我们可以计算出年份的各个数位上的数字之和,也可以分别计算月和日的各位数字之和。请问从 1900 年 1 月 1 日至 9999 年 12 月 31 日,总共有多少天,年份的数位数字之和等于月的数位数字之和加日的数位数字之和。
  例如,2022年11月13日满足要求,因为 2+0+2+2=(1+1)+(1+3) 。
  请提交满足条件的日期的总数量。

答案:
70910


def is_leap(year):return year % 100 != 0 and year % 4 == 0 or year % 400 == 0def check(y, m, d):dsy = sum(int(i) for i in str(y))dsm = sum(int(i) for i in str(m))dsd = sum(int(i) for i in str(d))return dsy == dsm + dsdma = [[0, 0], [31, 31], [28, 29], [31, 31], [30, 30], [31, 31], [30, 30], [31, 31], [31, 31], [30, 30], [31, 31], [30, 30], [31, 31]]
cy, cm, cd = 1900, 1, 1
dy, dm, dd = 9999, 12, 31
ans = 0
while cy != dy or cm != dm or cd != dd:cd += 1if cd > ma[cm][is_leap(cy)]:cd = 1cm += 1if cm > 12:cm = 1cy += 1#print(cy, cm, cd, ans)if check(cy, cm, cd):ans += 1print(check(2022, 11, 13))
print(ans)

4 遍历

问题描述
  小蓝有 30 个数,分别为:99, 22, 51, 63, 72, 61, 20, 88, 40, 21, 63, 30, 11, 18, 99, 12, 93, 16, 7, 53, 64, 9, 28, 84, 34, 96, 52, 82, 51, 77 。
  小蓝可以在这些数中取出两个序号不同的数,共有 30*29/2=435 种取法。
  请问这 435 种取法中,有多少种取法取出的两个数的乘积大于等于 2022 。

答案:189


a = [99, 22, 51, 63, 72, 61, 20, 88, 40, 21, 63, 30, 11, 18, 99, 12, 93, 16, 7, 53, 64, 9, 28, 84, 34, 96, 52, 82, 51, 77]
ans = 0
cnt = 0
for i in range(30):for j in range(i + 1, 30):cnt += 1if a[i] * a[j] >= 2022:ans += 1
print(cnt, ans)

5 搜索

问题描述
  小蓝有一个 30 行 60 列的数字矩阵,矩阵中的每个数都是 0 或 1 。
110010000011111110101001001001101010111011011011101001111110
010000000001010001101100000010010110001111100010101100011110
001011101000100011111111111010000010010101010111001000010100
101100001101011101101011011001000110111111010000000110110000
010101100100010000111000100111100110001110111101010011001011
010011011010011110111101111001001001010111110001101000100011
101001011000110100001101011000000110110110100100110111101011
101111000000101000111001100010110000100110001001000101011001
001110111010001011110000001111100001010101001110011010101110
001010101000110001011111001010111111100110000011011111101010
011111100011001110100101001011110011000101011000100111001011
011010001101011110011011111010111110010100101000110111010110
001110000111100100101110001011101010001100010111110111011011
111100001000001100010110101100111001001111100100110000001101
001110010000000111011110000011000010101000111000000110101101
100100011101011111001101001010011111110010111101000010000111
110010100110101100001101111101010011000110101100000110001010
110101101100001110000100010001001010100010110100100001000011
100100000100001101010101001101000101101000000101111110001010
101101011010101000111110110000110100000010011111111100110010
101111000100000100011000010001011111001010010001010110001010
001010001110101010000100010011101001010101101101010111100101
001111110000101100010111111100000100101010000001011101100001
101011110010000010010110000100001010011111100011011000110010
011110010100011101100101111101000001011100001011010001110011
000101000101000010010010110111000010101111001101100110011100
100011100110011111000110011001111100001110110111001001000111
111011000110001000110111011001011110010010010110101000011111
011110011110110110011011001011010000100100101010110000010011
010011110011100101010101111010001001001111101111101110011101
  如果从一个标为 1 的位置可以通过上下左右走到另一个标为 1 的位置,则称两个位置连通。与某一个标为 1 的位置连通的所有位置(包括自己)组成一个连通分块。
  请问矩阵中最大的连通分块有多大?
答案: 148

def dfs(x, y):global cur, visfor i, j in [[0, 1], [1, 0], [-1, 0], [0, -1]]:dx = i + xdy = j + yif dx < 0 or dy < 0 or dx >= 30 or dy >= 60 or mp[dx][dy] == '0' or vis[dx][dy]:continuecur += 1vis[dx][dy] = 1dfs(dx, dy)n, m = 30, 60
mp = []
for _ in range(n):mp.append(input())vis = [[0] * m for _ in range(n)]
ans, cur = 0, 0for i in range(n):for j in range(m):if mp[i][j] == '0':continuevis = [[0] * m for _ in range(n)]vis[i][j] = 1cur = 1dfs(i, j)ans = max(ans, cur)print(ans)

6 签到

问题描述
  给定一天是一周中的哪天,请问 n 天后是一周中的哪天?
输入格式
  输入第一行包含一个整数 w,表示给定的天是一周中的哪天,w 为 1 到 6 分别表示周一到周六,w 为 7 表示周日。
  第二行包含一个整数 n。
输出格式
  输出一行包含一个整数,表示 n 天后是一周中的哪天,1 到 6 分别表示周一到周六,7 表示周日。
样例输入
6
10
样例输出
2
评测用例规模与约定
  对于所有评测用例,1 <= n <= 1000000。

w = int(input())
n = int(input())
x = (w + n) % 7
print(x if x > 0 else 7)

7 遍历

问题描述
  小蓝负责一块区域的信号塔安装,整块区域是一个长方形区域,建立坐标轴后,西南角坐标为 (0, 0), 东南角坐标为 (W, 0), 西北角坐标为 (0, H), 东北角坐标为 (W, H)。其中 W, H 都是整数。
  他在 n 个位置设置了信号塔,每个信号塔可以覆盖以自己为圆心,半径为 R 的圆形(包括边缘)。
  为了对信号覆盖的情况进行检查,小蓝打算在区域内的所有横纵坐标为整数的点进行测试,检查信号状态。其中横坐标范围为 0 到 W,纵坐标范围为 0 到 H,总共测试 (W+1) * (H+1) 个点。
  给定信号塔的位置,请问这 (W+1)*(H+1) 个点中有多少个点被信号覆盖。
输入格式
  输入第一行包含四个整数 W, H, n, R,相邻整数之间使用一个空格分隔。
  接下来 n 行,每行包含两个整数 x, y,表示一个信号塔的坐标。信号塔可能重合,表示两个信号发射器装在了同一个位置。
输出格式
  输出一行包含一个整数,表示答案。
样例输入
10 10 2 5
0 0
7 0
样例输出
57
评测用例规模与约定
  对于所有评测用例,1 <= W, H <= 100,1 <= n <= 100, 1 <= R <= 100, 0 <= x <= W, 0 <= y <= H。

解析:遍历矩阵中的每个点,每个点与每个圆心求个距离,判断是否小于等于R即可

def check(x, y):for i in range(n):if (x - point[i][0]) ** 2 + (y - point[i][1]) ** 2 <= r * r:return Truereturn Falsew, h, n, r = map(int, input().split())
point = []
for _ in range(n):row = list(map(int, input().split()))point.append(row)ans = 0
for i in range(w + 1):for j in range(h + 1):if check(i, j):ans += 1
print(ans)

8 暴力

问题描述
  小蓝有一个 n * m 大小的矩形水域,小蓝将这个水域划分为 n 行 m 列,行数从 1 到 n 标号,列数从 1 到 m 标号。每行和每列的宽度都是单位 1 。
  现在,这个水域长满了水草,小蓝要清理水草。
  每次,小蓝可以清理一块矩形的区域,从第 r1 行(含)到第 r2 行(含)的第 c1 列(含)到 c2 列(含)。
  经过一段时间清理后,请问还有多少地方没有被清理过。
输入格式
  输入第一行包含两个整数 n, m,用一个空格分隔。
  第二行包含一个整数 t ,表示清理的次数。
  接下来 t 行,每行四个整数 r1, c1, r2, c2,相邻整数之间用一个空格分隔,表示一次清理。请注意输入的顺序。
输出格式
  输出一行包含一个整数,表示没有被清理过的面积。
样例输入
2 3
2
1 1 1 3
1 2 2 2
样例输出
2
样例输入
30 20
2
5 5 10 15
6 7 15 9
样例输出
519
评测用例规模与约定
  对于所有评测用例,1 <= r1 <= r2 <= n <= 100, 1 <= c1 <= c2 <= m <= 100, 0 <= t <= 100。

解析:
暴力:数据量不大

n, m = map(int, input().split())
vis = [[1] * m for _ in range(n)]
for _ in range(int(input())):r1, c1, r2, c2 = map(int, input().split())for i in range(r1 - 1, r2):for j in range(c1 - 1, c2):vis[i][j] = 0ans = 0
for i in range(n):for j in range(m):ans += vis[i][j]
print(ans)

9 搜索

问题描述
  小蓝准备在一个空旷的场地里面滑行,这个场地的高度不一,小蓝用一个 n 行 m 列的矩阵来表示场地,矩阵中的数值表示场地的高度。
  如果小蓝在某个位置,而他上、下、左、右中有一个位置的高度(严格)低于当前的高度,小蓝就可以滑过去,滑动距离为 1 。
  如果小蓝在某个位置,而他上、下、左、右中所有位置的高度都大于等于当前的高度,小蓝的滑行就结束了。
  小蓝不能滑出矩阵所表示的场地。
  小蓝可以任意选择一个位置开始滑行,请问小蓝最多能滑行多远距离。
输入格式
  输入第一行包含两个整数 n, m,用一个空格分隔。
  接下来 n 行,每行包含 m 个整数,相邻整数之间用一个空格分隔,依次表示每个位置的高度。
输出格式
  输出一行包含一个整数,表示答案。
样例输入
4 5
1 4 6 3 1
11 8 7 3 1
9 4 5 2 1
1 3 2 2 1
样例输出
7
样例说明
  滑行的位置一次为 (2, 1), (2, 2), (2, 3), (3, 3), (3, 2), (4, 2), (4, 3)。
评测用例规模与约定
  对于 30% 评测用例,1 <= n <= 20,1 <= m <= 20,0 <= 高度 <= 100。
  对于所有评测用例,1 <= n <= 100,1 <= m <= 100,0 <= 高度 <= 10000。

遍历每个位置,从该位置起进行dfs,dfs的每一层就是小蓝的滑行距离。


def dfs(x, y, vis, layer):global ansfor i, j in [[0, 1], [1, 0], [-1, 0], [0, -1]]:dx, dy = i + x, j + yif dx < 0 or dy < 0 or dx >= n or dy >= m or vis[dx][dy] or mp[x][y] <= mp[dx][dy]:continuevis[dx][dy] = 1dfs(dx, dy, vis, layer + 1)vis[dx][dy] = 0ans = max(ans, layer)n, m = map(int, input().split())
mp = []
for _ in range(n):row = list(map(int, input().split()))mp.append(row)ans = 0
for i in range(n):for j in range(m):vis = [[0] * m for _ in range(n)]vis[i][j] = 1dfs(i, j, vis, 1)
print(ans)

10 线段树+区间最大值

问题描述
  小蓝有一个序列 a[1], a[2], …, a[n]。
  给定一个正整数 k,请问对于每一个 1 到 n 之间的序号 i,a[i-k], a[i-k+1], …, a[i+k] 这 2k+1 个数中的最小值是多少?当某个下标超过 1 到 n 的范围时,数不存在,求最小值时只取存在的那些值。
输入格式
  输入的第一行包含一整数 n。
  第二行包含 n 个整数,分别表示 a[1], a[2], …, a[n]。
  第三行包含一个整数 k 。
输出格式
  输出一行,包含 n 个整数,分别表示对于每个序号求得的最小值。
样例输入
5
5 2 7 4 3
1
样例输出
2 2 2 3 3
评测用例规模与约定
  对于 30% 的评测用例,1 <= n <= 1000,1 <= a[i] <= 1000。
  对于 50% 的评测用例,1 <= n <= 10000,1 <= a[i] <= 10000。
  对于所有评测用例,1 <= n <= 1000000,1 <= a[i] <= 1000000。


def build(rt, l, r):global treeif l == r:tree[rt] = arr[l]returnm = (l + r) >> 1build(rt << 1, l, m)build(rt << 1 | 1, m + 1, r)tree[rt] = min(tree[rt << 1], tree[rt << 1 | 1])def query_mi(rt, l, r, L, R):if L <= l and r <= R:return tree[rt]m = (l + r) >> 1ans = infif L <= m:ans = min(ans, query_mi(rt << 1, l, m, L, R))if m < R:ans = min(ans, query_mi(rt << 1 | 1, m + 1, r, L, R))return ansn = int(input())
arr = list(map(int, input().split()))
arr.insert(0, 0)
k = int(input())
inf = 1000000 + 5
tree = [inf] * (n * 4)
ans = []
build(1, 1, n)
for i in range(1, n + 1):l = i - k if i - k > 0 else 1r = i + k if i + k <= n else nans.append(query_mi(1, 1, n, l, r))for i in range(n):print(ans[i], end=" ")

相关文章:

第十四届蓝桥杯模拟赛(第三期)Python

1 进制转换 问题描述   请找到一个大于 2022 的最小数&#xff0c;这个数转换成十六进制之后&#xff0c;所有的数位&#xff08;不含前导 0&#xff09;都为字母&#xff08;A 到 F&#xff09;。   请将这个数的十进制形式作为答案提交。 答案&#xff1a;2730 def ch…...

Pytorch模型参数的保存和加载

目录 一、前言 二、参数保存 三、参数的加载 四、保存和加载整个模型 五、总结 一、前言 在模型训练完成后&#xff0c;我们需要保存模型参数值用于后续的测试过程。由于保存整个模型将耗费大量的存储&#xff0c;故推荐的做法是只保存参数&#xff0c;使用时只需在建好模…...

面试热点题:回溯算法之组合 组合与组合总和 III

什么是回溯算法&#xff1f; 回溯算法也可以叫回溯搜索算法&#xff0c;回溯是递归的"副产品",回溯的本质是穷举&#xff0c;然后选出我们需要的数据&#xff0c;回溯本身不是特别高效的算法&#xff0c;但我们可以通过"剪枝"来优化它。 理解回溯算法 回溯…...

java面试-jvm

JVM JVM 是 java 虚拟机&#xff0c;简单来说就是能执行标准 java 字节码的虚拟计算机 JVM 是如何工作的 首先程序在执行之前先要把 Java 代码&#xff08;.java&#xff09;转换成字节码&#xff08;.class&#xff09;&#xff0c;JVM 通过类加载器&#xff08;ClassLoade…...

vscode下载与使用

1.vscode下载 官网下载地址&#xff1a;Download Visual Studio Code - Mac, Linux, Windows下载太慢&#xff0c;推荐文章&#xff1a;解决VsCode下载慢问题_vscode下载太慢_迷小圈的博客-CSDN博客下载太慢&#xff0c;推荐下载链接&#xff1a;https://vscode.cdn.azure.cn/s…...

人员摔倒识别预警算法 opencv

人员摔倒识别预警算法通过opencv网络模型技术&#xff0c;人员摔倒识别预警算法能够智能检测现场画面中人员有没有摔倒&#xff0c;无需人为干预可以立刻抓拍告警。OpenCV的全称是Open Source Computer Vision Library&#xff0c;是一个跨平台的计算机视觉处理开源软件库&…...

华为OD机试题 - 火星文计算(JavaScript)| 机考必刷

更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:火星文计算题目输入输出示例一输入输出说明Code解题思路版权说明…...

AI人工智能 - 初探

1.应用场景 主要用于了解和系统学习AI&#xff0c;从而可以在工作生活中利用AI做一些事。 2.学习/操作 1.文档阅读 下面的内容来自于与chatGPT的对话 2.整理输出 介绍AI 人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是计算机科学中的一个分支&…...

Spring-AOP工作流程

Spring-AOP工作流程 3&#xff0c;AOP工作流程 3.1 AOP工作流程 由于AOP是基于Spring容器管理的bean做的增强&#xff0c;所以整个工作过程需要从Spring加载bean说起: 流程1:Spring容器启动 容器启动就需要去加载bean,哪些类需要被加载呢?需要被增强的类&#xff0c;如:B…...

C51---串口发送指令,控制LED灯亮灭

1.Code: #include "reg52.h" #include "intrins.h" sfr AUXR 0x8E; sbit D5 P3^7; void UartInit(void) //9600bps11.0592MHz { //PCON & 0x7F; //波特率不倍速 AUXR 0x01; SCON 0x50; //8位数据,可变波…...

【Wiki】XWiki数据备份

XWiki为主题使用java开发的开源wiki&#xff0c;官网地址如下&#xff1a; https://www.xwiki.org/xwiki/bin/view/Main/ 目录1、 XWiki升级数据备份1.1、 获取XWiki配置的数据库与持久化目录信息1.2 备份数据库信息1.3 备份持久化目录2、XWiki数据迁移如果一个知识库不能确保数…...

ctk框架开发Qt插件应用示例工程

目录 前言 约定 插件工程pluginApp: 主启动工程StartApp: 效果演示 结语...

spring5源码篇(4)——beanFactoryPostProcessor执行/注解bean的装配

spring-framework 版本&#xff1a;v5.3.19 前面研究了beanDefinition的注册&#xff0c;但也仅仅是注册这一动作。那么在spring容器启动的过程中&#xff0c;是何时/如何装配的&#xff1f;以及装配的bean是如何注入的&#xff1f; &#xff08;考虑到xml方式基本不用了以及篇…...

masstransit的message几个高级用法

1&#xff09;问题&#xff0c;Class MessageA 基类&#xff0c;Class MessageB继承自MessageA&#xff1b; 用bus.Publish方法本想把有些消息只发给B队列&#xff0c;结果由于其继承关系A队列也获得了消息&#xff1b; 解决方法用send&#xff0c; Uri uri new Uri(RabbitM…...

漏洞分析丨cve-2012-0003

作者:黑蛋一、漏洞简介这次漏洞属于堆溢出漏洞&#xff0c;他是MIDI文件中存在的堆溢出漏洞。在IE6&#xff0c;IE7&#xff0c;IE8中都存在这个漏洞。而这个漏洞是Winmm.dll中产生的。二、漏洞环境虚拟机调试工具目标软件辅助工具XP-SP3、KaliOD、IDAIE6Windbg组件gflags.exe三…...

rm命令——删除文件或目录

rm命令是英文单词remove的缩写&#xff0c;主要功能是删除文件或目录。 因为删除文件是一个破坏性动作&#xff0c;因此&#xff0c;在使用时需要格外小心&#xff0c;在执行之前一定要再三确认删除的是哪个目录中的什么文件。 rm命令的语法格式如下&#xff1a; rm [选项] …...

【零基础入门学习Python---Python的基本语法使用】

一.Python基本语法使用 Python是一种易学且功能强大的编程语言,具有简洁的语法和广泛的应用领域。在本文中,我们将介绍Python的基本语法使用,以帮助初学者快速入门Python编程。 1.1 注释 Python 支持两种类型的注释:单行注释和多行注释。 单行注释:以 # 符号开头,从 # …...

数据仓库相关概念的解释

数据仓库相关概念的解释 文章目录数据仓库相关概念的解释1 ETL是什么&#xff1f;ETL体系结构2 数据流向何为数仓DW3 ODS 是什么&#xff1f;4 数据仓库层DWDWD 明细层DWD 轻度汇总层&#xff08;MID或DWB&#xff0c;data warehouse basis&#xff09;DWS 主题层&#xff08;D…...

1/4车、1/2车、整车悬架模糊PID控制仿真合集

目录 前言 1. 1/4悬架系统 1.1数学模型 1.2仿真分析 2. 1/2悬架系统 2.1数学模型 2.2仿真模型 2.3仿真分析 3. 整车悬架系统 3.1数学模型 3.2仿真分析 4.总结 前言 前面几篇文章介绍了LQR、SkyHook、H2/H∞、PID控制&#xff0c;接下来会继续介绍滑模、反步法、M…...

Linux性能补丁升级,避免不必要的跨核Wake-Up

导读一个由英特尔发起的、旨在改进Linux内核公平调度程序代码的补丁系列&#xff0c;也看到了来自AMD工程师和其他利益相关者的测试/反馈&#xff0c;并继续进行改进。这个补丁系列的重点是避免在不必要的情况下发生过多的跨核唤醒(Cross-CPU Wake-up)。这样一来&#xff0c;这…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...