当前位置: 首页 > news >正文

【scikit-learn入门指南】:机器学习从零开始

1. 简介

scikit-learn是一款用于数据挖掘和数据分析的简单高效的工具,基于NumPy、SciPy和Matplotlib构建。它能够进行各种机器学习任务,如分类、回归和聚类。

2. 安装scikit-learn

在开始使用scikit-learn之前,需要确保已经安装了scikit-learn库。可以使用以下命令安装:

pip install scikit-learn

3. 数据预处理

数据预处理是机器学习中的一个重要步骤。在这一部分,我们将讨论如何处理缺失值、标准化数据以及编码类别变量。

缺失值处理

在实际数据集中,经常会遇到缺失值。我们可以使用scikit-learn的SimpleImputer类来填补缺失值。

import numpy as np
from sklearn.impute import SimpleImputer# 创建一个包含缺失值的数据集
data = np.array([[1, 2, np.nan], [3, np.nan, 6], [7, 8, 9]])# 使用均值填补缺失值
imputer = SimpleImputer(strategy='mean')
data_imputed = imputer.fit_transform(data)print("填补后的数据:\n", data_imputed)

结果分析:以上代码用列的均值填补了缺失值,输出的填补后数据如下:

填补后的数据:
[[1. 2. 7.5][3. 5. 6.][7. 8. 9.]]

数据标准化

不同特征的数值范围可能差异很大,为了提高模型的性能,通常需要对数据进行标准化处理。

from sklearn.preprocessing import StandardScaler# 标准化数据
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data_imputed)print("标准化后的数据:\n", data_scaled)

结果分析:数据标准化后,各特征的均值为0,标准差为1。

类别变量编码

对于分类变量,需要将其转换为数值型。可以使用OneHotEncoder来进行独热编码。

from sklearn.preprocessing import OneHotEncoder# 创建一个包含类别变量的数据集
data = np.array([['Male', 1], ['Female', 3], ['Female', 2]])# 独热编码
encoder = OneHotEncoder(sparse=False)
data_encoded = encoder.fit_transform(data)print("编码后的数据:\n", data_encoded)

结果分析:独热编码将类别变量转换为二进制特征。

4. 数据集划分

在训练模型前,需要将数据集划分为训练集和测试集。train_test_split函数可以轻松实现这一点。

from sklearn.model_selection import train_test_split# 创建一个示例数据集
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
y = np.array([0, 1, 0, 1, 0])# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)print("训练集特征:\n", X_train)
print("测试集特征:\n", X_test)

结果分析:数据集按照80%的比例划分为训练集和测试集。

5. 模型选择与训练

在这部分,我们将介绍几种常用的机器学习模型,并展示如何使用scikit-learn进行训练和预测。

线性回归

线性回归是最简单的回归模型之一。

from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("线性回归预测结果:", predictions)

结果分析:线性回归模型对测试集进行了预测,输出预测值。

逻辑回归

逻辑回归常用于二分类问题。

from sklearn.linear_model import LogisticRegression# 创建逻辑回归模型
model = LogisticRegression()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("逻辑回归预测结果:", predictions)

结果分析:逻辑回归模型对测试集进行了预测,输出预测类别。

K近邻算法

K近邻算法是一种基于实例的学习方法。

from sklearn.neighbors import KNeighborsClassifier# 创建K近邻模型
model = KNeighborsClassifier(n_neighbors=3)# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("K近邻预测结果:", predictions)

结果分析:K近邻模型对测试集进行了预测,输出预测类别。

决策树

决策树是一种常见的分类和回归方法。

from sklearn.tree import DecisionTreeClassifier# 创建决策树模型
model = DecisionTreeClassifier()# 训练模型
model.fit(X_train, y_train)# 预测
predictions = model.predict(X_test)print("决策树预测结果:", predictions)

结果分析:决策树模型对测试集进行了预测,输出预测类别。

6. 模型评估

在这一部分,我们将讨论如何使用交叉验证、混淆矩阵和ROC曲线来评估模型性能。

交叉验证

交叉验证可以帮助我们更稳定地评估模型性能。

from sklearn.model_selection import cross_val_score# 使用交叉验证评估模型
scores = cross_val_score(model, X, y, cv=5)print("交叉验证得分:", scores)

结果分析:交叉验证得分展示了模型在不同折中的性能。

混淆矩阵

混淆矩阵用于评估分类模型的性能。

from sklearn.metrics import confusion_matrix# 计算混淆矩阵
cm = confusion_matrix(y_test, predictions)print("混淆矩阵:\n", cm)

结果分析:混淆矩阵展示了模型的分类情况,包括正确和错误的分类数量。

ROC曲线

ROC曲线用于评估二分类模型的性能。

from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 计算ROC曲线
fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:,1])
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

结果分析:ROC曲线展示了模型在不同阈值下的性能,AUC值越接近1表示模型性能越好。

7. 结论

本教程详细介绍了如何使用scikit-learn进行数据预处理、模型训练与评估。scikit-learn提供了丰富的工具和方法,可以方便地进行机器学习任务。希望通过本教程,读者能对scikit-learn有一个全面的了解,并能够在实际项目中应用这些知识。

通过对各个模型的详细解释和代码实现,相信你已经掌握了scikit-learn的基础操作。尝试用你自己的数据集进行练习,进一步提升你的机器学习技能吧!

相关文章:

【scikit-learn入门指南】:机器学习从零开始

1. 简介 scikit-learn是一款用于数据挖掘和数据分析的简单高效的工具,基于NumPy、SciPy和Matplotlib构建。它能够进行各种机器学习任务,如分类、回归和聚类。 2. 安装scikit-learn 在开始使用scikit-learn之前,需要确保已经安装了scikit-le…...

MEMS:Lecture 17 Noise MDS

讲义 Minimum Detectable Signal (MDS) Minimum Detectable Signal(最小可检测信号)是指当信号-噪声比(Signal-to-Noise Ratio, SNR)等于1时的输入信号水平。简单来说,MDS 是一个系统能够分辨出信号存在的最低输入信号…...

Windows运维:找到指定端口的服务

运维过windows的或多或少都遇到过需要找到一个端口对应的服务,或者是因为端口占用,或者是想看下对应的服务是哪个,那么如何操作呢?看看本文吧。 1、按照端口找到进程ID 例如想找8000端口的进程ID netstat -ano | findstr :8000 2…...

Linux文件系统讲解!

一、Linux文件系统历史 1、在早期的时候Linux各种不同发行版拥有自己各自自定义的文件系统层级结构。 2、当我用Red hat转向玩Debian时,我进入/etc我都是懵的。 3、后来Linux社区做了一个标准、FHS(文件系统标准层次结构)。来帮助Linux系统的…...

mysql集群,两主两从,使用mysql-proxy实现读写分离

主从复制 一、IP规划 服务器IP备注master1192.168.100.131master2的从master2192.168.100.132master1的从slave1192.168.100.134slave1的从slave2192.168.100.135slave2的从mysql-proxy192.168.100.137 二、具体配置 1.master1 ​ 配置ip:192.168.100.131 ​ …...

Linux文本处理三剑客+正则表达式

Linux文本处理常用的3个命令,脚本或者文本处理任务中会用到。这里做个整理。 三者的功能都是处理文本,但侧重点各不相同,grep更适合单纯的查找或匹配文本,sed更适合编辑匹配到的文本,awk更适合格式化文本,对…...

Linux启动KKfileview文件在线浏览时报错:启动office组件失败,请检查office组件是否可用

目录 1、导论 2、报错信息 3、问题分析 4、解决方法 4.1、下载 4.2、安装步骤 1、导论 今天进行项目部署时,遇到了一个问题。在启动kkfileview时,出现了报错异常: 2024-06-09 06:36:44.765 ERROR 1 --- [ main] cn.keking.service.Of…...

React <> </>的用法

React &#xff1c;&#xff1e; &#xff1c;/&#xff1e;的用法 介绍为什么使用 <>&#xff1f;例子解释 关于顶级元素总结 介绍 在 React 中&#xff0c;使用 <> 表示一个空标签或片段&#xff08;Fragment&#xff09;&#xff0c;这是一个简洁的方式来包裹一…...

is not null 、StringUtils.isNotEmpty和StringUtils.isNotBlank之间的区别?

这三者主要是针对对象是否为空、是否为空串和是否为空白字符串有不同的功能。 is not null 只是说明该对象不为空&#xff0c;没有考虑是否为空串和空白字符串。 StringUtils.isNotEmpty检查字符串是否不为 null且长度大于零&#xff0c;不考虑字符串中的空白字符。 StringU…...

Git使用-gitlab上面的项目如何整到本地的idea中

场景 一般我们在开发项目或者接手某个项目时&#xff0c;基本都要接触Git&#xff0c;比如上传项目代码&#xff0c;下载同事给你的交接代码等等。 这是一个基本功&#xff0c;小小整理一下日常操作中的使用。 第一步&#xff1a;在 GitLab 上找到你要克隆的项目&#xff0c;复…...

活体检验API在Java、Python、PHP中的使用教程

活体检验API是一种基于生物特征的身份验证技术&#xff0c;通过分析和识别用户的生物信息来确认其身份。这种技术广泛应用于各种领域&#xff0c;如金融、安全、社交媒体等&#xff0c;以提高身份验证的安全性和准确性。以下是描述”活体检验API”背景的一些关键点&#xff1a;…...

智能计算系统-概述

1、人工智能技术分层 2、人工智能方向人才培养 3、课程体系的建议 4、智能系统课程对学生的价值 5、智能计算系统对老师的价值 6、什么是智能计算系统 7、智能计算系统的形态 8、智能计算系统具有重大价值 9、智能计算系统的三大困难 10、开创深度学习处理器方向 11、寒武纪的国…...

SM5101 SOP-8 充电+触摸+发执丝控制多合一IC触摸打火机专用IC

SM5101 SOP-8 2.7V 涓流充电 具电池过充过放 触摸控制 发热丝电流控制多功能为一体专用芯片 昱灿-海川 SM5101 SOP-8 充电触摸发执丝控制多合一IC触摸打火机方案 &#xff01;&#xff01;&#xff01; 简介&#xff1a; SM5101是一款针对电子点烟器的专用芯片&#xff0c;具…...

Mysql-题目02

下面列出的&#xff08; DBMS &#xff09;是数据库管理系统的简称。 A、DB&#xff08;数据库&#xff09; B、DBA C、DBMS(数据库管理系统&#xff09; D、DBS&#xff08;数据库系统) 以下选项中&#xff0c;&#xff08; 概念模式 &#xff09;面向数据库设计人员&…...

Swift开发——循环执行方式

本文将介绍 Swift 语言的循环执行方式 01、循环执行方式 在Swift语言中,主要有两种循环执行控制方式: for-in结构和while结构。while结构又细分为当型while结构和直到型while结构,后者称为repeat-while结构。下面首先介绍for-in结构。 循环控制方式for-in结构可用于区间中的…...

Navicat和SQLynx产品功能比较一(整体比较)

Navicat和SQLynx都是数据库管理工具&#xff0c;在过去的二十年中&#xff0c;国内用户主要是使用Navicat偏多&#xff0c;一般是个人简单开发需要&#xff0c;数据量一般不大&#xff0c;开发相对简单。SQLynx是最近几年的数据库管理工具&#xff0c;Web开发&#xff0c;桌面版…...

pip 配置缓存路径

在windows操作平台&#xff0c;默认情况&#xff0c;pip下使用的系统目录 C:\Users\用名名称\AppData\Local\pip C盘是系统盘&#xff0c;如果常常使用pip安装会占用大量的空间很快就满&#xff0c;这时候就有必要变更一下缓存保存路径了。 pip 配置缓存路径&#xff1a; Win…...

大数据开发语言Scala(一) - Scala入门

引言 在当今的大数据时代&#xff0c;数据量和数据处理的复杂性不断增加&#xff0c;传统的编程语言已经难以满足需求。Scala作为一门新兴的编程语言&#xff0c;以其简洁、强大和高效的特性&#xff0c;迅速成为大数据开发的热门选择。本文将详细介绍Scala语言的基础知识&…...

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么???

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么&#xff1f;&#xff1f;&#xff1f; 这些精度是用来干嘛的&#xff1f;&#xff1f;混合精度 mixed precision training什么是混合精度&#xff1f;怎么转换呢&#xff1f; 为什么大语言模型通常使用FP32精度训练量化…...

在矩池云使用GLM-4的详细指南(无感连GitHubHuggingFace)

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本&#xff0c;在多项测试中表现出超越已有同等规模开源模型的性能&#xff0c;它能兼顾多轮对话、网页浏览、代码执行、多语言、长文本推理等多种功能&#xff0c;性能更加强大。其多模态语言模型GLM-4V-9B在…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...