当前位置: 首页 > news >正文

TGI模型- 同期群-评论文本

用户偏好分析 TGI

1.1 用户偏好分析介绍

要分析的目标,在目标群体中的均值 和 全部群体里的均值进行比较, 差的越多说明 目标群体偏好越明显

TGI(Target Group Index,目标群体指数)用于反映目标群体在特定研究范围内强势或者弱势的程度

案例的需求, 高利润的产品投放市场, 找到合适的城市进行投放, 统计不同城市高客单价用户占比的TGI ,找到TGI比较大的城市, 还需要考虑总用户数量不要过少

1.2 代码

import pandas as pd
df = pd.read_excel('data/PreferenceAnalysis.xlsx')
df.head()
df.info()
df.describe()

用户打标 判断每个用户是否属于高客单价的人群

​
df['用户ID'].nunique() # 统计不重复的用户ID数量
# 计算每个用户平均消费金额
user_df = df.groupby(['用户ID'],as_index=False)['实付金额'].mean()
user_df.columns = ['用户ID','平均支付金额']
#%%
def if_high(x):if x>50:return '高客单价'else:return '低客单价'
user_df['用户类别'] = user_df['平均支付金额'].apply(if_high)
user_df

按城市统计, 高客单价人群 低客单价人群的数量

# 针对消费流水表, 去重, 用户ID 省份 城市 进行去重, 去重之后的数据,在与前面计算出来的用户标签进行关联
df_dup = df.drop_duplicates(subset=['用户ID','省份','城市'])
​
df_merge = pd.merge(user_df,df_dup,on='用户ID',how='left')
df_merge=df_merge[['用户ID', '平均支付金额', '用户类别','省份', '城市']]
df_merge.head()
#%%
df_result = df_merge.pivot_table(index=['省份','城市'],columns='用户类别',values='用户ID',aggfunc='count')
df_result.reset_index(inplace=True)

发现数据中有缺失值, 对缺失值进行处理

df_result.info()
#%%
#  分省份,城市 统计高客单价,低客单价用户数量的时候, 发现数据中有缺失值, 缺失的原因是某些城市没有这一类型的用户, 此时可以使用0来进行填充
df_result.fillna(0,inplace=True)
df_result.info()
#%%
df_result[df_result['低客单价']==0]

计算用户总数和高客单价占比

df_result['用户总数'] = df_result['低客单价']+df_result['高客单价']
df_result['高客单价占比'] = df_result['高客单价']/df_result['用户总数']

计算TGI target Group index 目标群体指数

df_result.info()
#%%
df_result['高客单价'].sum()/df_result['用户总数'].sum()
#%%
df_result['整体高客单价占比'] = df_result['高客单价'].sum()/df_result['用户总数'].sum()
#%%
df_result['TGI'] = df_result['高客单价占比']/df_result['整体高客单价占比'] *100

过滤掉用户数量太少的城市, 给出结论

user_count_mean = df_result['用户总数'].mean()
df_result[df_result['用户总数']>user_count_mean].sort_values(by='TGI',ascending=False)

同期群分析

使用场景

  • 电商场景:比较不同月份客群的留存情况, 需要比较的是过了一个月(+1月)留存率,过了两个月(+2月)留存率....

  • 金融信贷的场景:比较不同月份客群的违约情况, 需要比较的是过了一个月(+1月)违约率,过了两个月(+2月)违约率....

  • 不能直接使用当前月份的数据直接做对比

使用同期群分析的时候, 周期可以调整, 指标可以换,可以把每一月份的数据按照其它维度进行拆解

  • 比较客群留存情况把渠道考虑进来

案例: 计算了用户留存情况

  • 每个月新增的用户, 当前有购买的用户ID - 之前月份也出现过的用户ID

  • 留存使用复购来表示

评论文本分析

基本数据的处理

  • 从评星中获取好评中评差评分类

  • 从评价的时间中, 截取年月的数据

  • 评论文本内容, 进行分词, 统计不同单词出现的次数(计算词频)

    • 中文的评论, 分词是需要处理的部分, 可以使用 jieba这个库对中文进行分词

    • 英文 词形还原过程 given → give been → be 可以使用NLTK库

    • 无论中文/英文都要处理的 去停用词 stopwords 没有意义的连词,代词,介词

      • 英文 of the

      • 中文 的地 得 ...

      • 可以从网上下载停用词表

      • 统计词频的时候不统计停用词

从评论的数量, 判断出销量,按照时间的维度, 绘制折线图, 通过评论数量的波动, 发现销量的变化规律

从评论的词频统计中, 可以知道

  • 如果是差评, 大家都在吐槽什么, 发现产品的缺点

  • 如果是好评, 大家都在夸什么

相关文章:

TGI模型- 同期群-评论文本

用户偏好分析 TGI 1.1 用户偏好分析介绍 要分析的目标,在目标群体中的均值 和 全部群体里的均值进行比较, 差的越多说明 目标群体偏好越明显 TGI(Target Group Index,目标群体指数)用于反映目标群体在特定研究范围内…...

ESP32 BLE学习(0) — 基础架构

前言 (1)学习本文之前,需要先了解一下蓝牙的基本概念:BLE学习笔记(0.0) —— 基础概念(0) (2) 学习一款芯片的蓝牙肯定需要先简单了解一下该芯片的体系结构&a…...

【JAVA】Java中Spring Boot如何设置全局的BusinessException

文章目录 前言一、函数解释二、代码实现三、总结 前言 在Java应用开发中,我们常常需要读取配置文件。Spring Boot提供了一种方便的方式来读取配置。在本文中,我们将探讨如何在Spring Boot中使用Value和ConfigurationProperties注解来读取配置。 一、函数…...

pdf.js实现web h5预览pdf文件(兼容低版本浏览器)

注意 使用的是pdf.js 版本为 v2.16.105。因为新版本 兼容性不太好,部分手机预览不了,所以采用v2版本。 相关依赖 "canvas": "^2.11.2", "pdfjs-dist": "^2.16.105", "core-js-pure": "^3.37.…...

SSID简介

一、 SSID 概念定义 SSID(Service Set Identifier)即服务集标识符。它是无线网络中的一个重要标识,用于区分不同的无线网络。 相当于无线网络的名称,用于区分不同的无线网络。用户在众多可用网络中识别和选择特定网络的依据。通…...

PS通过GTX实现SFP网络通信1

将 PS ENET1 的 GMII 接口和 MDIO 接口 通过 EMIO 方 式引出。在 PL 端将引出的 GMII 接口和 MDIO 接口与 IP 核 1G/2.5G Ethernet PCS/PMA or SGMII 连接, 1G/2.5G Ethernet PCS/PMA or SGMII 通过高速串行收发器 GTX 与 MIZ7035/7100 开发…...

前端面试项目细节重难点(已工作|做分享)(九)

面试官:请你讲讲你在工作中如何开发一个新需求,你的整个开发过程是什么样的? 答:仔细想想,我开发新需求的过程如下: (1)第一步:理解需求文档: 首先&#x…...

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BP-ABKDE的BP神经网络自适应带…...

抢占人工智能行业红利,前阿里巴巴产品专家带你15天入门AI产品经理

前言 当互联网行业巨头纷纷布局人工智能,国家将人工智能上升为国家战略,藤校核心课程涉足人工智能…人工智能领域蕴含着巨大潜力,早已成为业内共识。 面对极大的行业空缺,不少人都希望能抢占行业红利期,进入AI领域。…...

MEMS:Lecture 16 Gyros

陀螺仪原理 A classic spinning gyroscope measures the rotation rate by utilizing the conservation of angular momentum. 经典旋转陀螺仪通过利用角动量守恒来测量旋转速率。 Coriolis Effect and Coriolis Force 科里奥利效应是一种出现在旋转参考系中的现象。它描述了…...

Java中List流式转换为Map的终极指南

哈喽,大家好,我是木头左! 在Java编程中,经常需要将一个List对象转换为另一个Map对象。这可能是因为需要根据List中的元素的某些属性来创建一个新的键值对集合。在本文中,我将向您展示如何使用Java 中的流式API轻松地实…...

【秋招突围】2024届秋招笔试-小红书笔试题-第一套-三语言题解(Java/Cpp/Python)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系计划跟新各公司春秋招的笔试题 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📧 清隆这边…...

HAL库开发--STM32的HAL环境搭建

知不足而奋进 望远山而前行 目录 文章目录 前言 下载 安装 解压 安装 添加开发包 修改仓库路径 下载软件开发包(慢,不推荐) 解压已有软件开发包(快,推荐) 总结 前言 在嵌入式系统开发中&#x…...

【DPDK学习路径】七、创建RX/TX队列

上一节我们讲述了如何申请内存池缓冲区以便接下来创建 RX 队列,这一节我们将给出具体如何创建 RX/TX 队列。 在 DPDK 中提供了 rte_eth_rx_queue_setup 及 rte_eth_tx_queue_setup 这两个接口用于接收/发送队列的创建。 下面给出一个为各个网卡创建RX/TX 队列的实例…...

【ArcGISProSDK】OpenItemDialog打开文件对话框

打开单个文件 效果 代码 public async void OpenFunction() {// 获取默认数据库var gdbPath Project.Current.DefaultGeodatabasePath;OpenItemDialog openItemDialog new OpenItemDialog() { Title "打开要素文件",InitialLocation gdbPath,Filter ItemFilte…...

TensorFlow2.x基础与mnist手写数字识别示例

文章目录 Github官网文档Playground安装声明张量常量变量 张量计算张量数据类型转换张量数据维度转换ReLU 函数Softmax 函数卷积神经网络训练模型测试模型数据集保存目录显示每层网络的结果 TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发和维护。它…...

大数据开发语言Scala入门

Scala是一种多范式编程语言,它集成了面向对象编程和函数式编程的特性。Scala运行在Java虚拟机上,并且可以与Java代码无缝交互,这使得它成为大数据处理和分析领域中非常受欢迎的语言,尤其是在使用Apache Spark这样的框架时。 Scal…...

【CDN】逆天 CDN !BootCDN 向 JS 文件中植入恶意代码

今天在调试代码,突然控制台出现了非常多报错。 这非常可疑,报错指向的域名也证实了这一点。 因为我的 HTML 中只有一个外部开源库(qrcode.min.js),因此只有可能是它出现了问题。 我翻看了请求记录,发现这…...

摆脱Jenkins - 使用google cloudbuild 部署 java service 到 compute engine VM

在之前 介绍 cloud build 的文章中 初探 Google 云原生的CICD - CloudBuild 已经介绍过, 用cloud build 去部署1个 spring boot service 到 cloud run 是很简单的, 因为部署cloud run 无非就是用gcloud 去部署1个 GAR 上的docker image 到cloud run 容…...

【CS.PL】Lua 编程之道: 控制结构 - 进度24%

3 初级阶段 —— 控制结构 文章目录 3 初级阶段 —— 控制结构3.1 条件语句:if、else、elseif3.2 循环语句:for、while、repeat-until3.2.1 输出所有的命令行参数3.2.2 while.lua3.2.3 repeat.lua及其作用域 🔥3.2.4 for.lua (For Statement)…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Python如何给视频添加音频和字幕

在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)&#xff…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...