【爬虫】requests 结合 BeautifulSoup抓取网页数据
一、BeautifulSoup使用步骤
BeautifulSoup 是一个用于从 HTML 或 XML 文件中提取数据的 Python 库。以下是如何使用 BeautifulSoup 来解析 HTML 并提取信息的基本步骤:
1、安装:
如果你还没有安装 BeautifulSoup,你可以使用 pip 来安装它。BeautifulSoup 通常与 lxml 或 html.parser 这样的解析器一起使用,但 lxml 通常提供更快的解析和更全面的功能。
pip install beautifulsoup4 lxml
2、导入库:
在你的 Python 脚本中,你需要导入 BeautifulSoup 和一个解析器。
from bs4 import BeautifulSoup
import requests
注意:这里我也导入了 requests 库,它用于从网络获取 HTML 内容。如果你已经有了 HTML 内容,你可以直接用它来创建 BeautifulSoup 对象。
3、获取 HTML 内容:
使用 requests 库从网页获取 HTML 内容。
url = 'http://example.com'
response = requests.get(url)
response.raise_for_status() # 如果请求失败,这会抛出一个异常
html_content = response.text
4、解析 HTML:
使用 BeautifulSoup 和解析器来解析 HTML 内容。
soup = BeautifulSoup(html_content, 'lxml')
5、提取数据:
使用 BeautifulSoup 的各种方法和选择器来提取你感兴趣的数据。例如,使用 .find() 或 .find_all() 方法来查找标签,并使用 .get_text() 方法来获取标签内的文本。
# 查找所有的段落标签 <p>
paragraphs = soup.find_all('p')# 打印每个段落的文本内容
for paragraph in paragraphs:print(paragraph.get_text())# 查找具有特定类名的标签
divs_with_class = soup.find_all('div', class_='some-class')# 使用 CSS 选择器查找元素
links = soup.select('a[href]') # 查找所有带有 href 属性的 <a> 标签
6、处理属性:
你也可以获取和处理 HTML 标签的属性。例如,要获取一个链接的 href 属性,你可以这样做:
for link in soup.find_all('a'):print(link.get('href'))
7、清理和关闭:
在处理完 HTML 后,你可能想要关闭任何打开的文件或连接(尽管在使用 requests 和 BeautifulSoup 时通常不需要手动关闭它们)。但是,如果你的脚本涉及其他资源,请确保正确关闭它们。
8、注意事项:
- 尊重网站的
robots.txt文件和版权规定。 - 不要过度请求网站,以免对其造成负担。
- 考虑使用异步请求或线程/进程池来加速多个请求的处理。
- 使用错误处理和重试逻辑来处理网络请求中的常见问题。
二、示例1:抓取百度百科数据
1)抓取百度百科《青春有你第三季》数据
抓取链接是:https://baike.baidu.com/item/青春有你第三季?fromModule=lemma_search-box#4-3
import json
from bs4 import BeautifulSoup
import requestsheaders = {"accept-language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6","cache-control": "max-age=0"
}def getAllUsers():url = "https://baike.baidu.com/item/%E9%9D%92%E6%98%A5%E6%9C%89%E4%BD%A0%E7%AC%AC%E4%B8%89%E5%AD%A3?fromModule=lemma_search-box#4-3"response = requests.get(url, headers=headers)response.raise_for_status() # 如果请求失败,这会抛出一个异常html_content = response.textsoup = BeautifulSoup(html_content, 'lxml')trs = soup.find('div', attrs={'data-uuid': "go12lpqgpn"}).find_all(name='tr')listUser = []for tr in trs[1:]:tds = tr.find_all('td')name = tds[0].find('a').get_text()head_href = tds[0].find('a').attrs['href']head_id = head_href.split('/')[3].split('?')[0]provice = tds[1].find('span').get_text()height = tds[2].find('span').get_text()weight = tds[3].find('span').get_text()company = tds[4].find('span').get_text()user = {'name': name, 'head_id': head_id, 'provice': provice, 'height': height, 'weight': weight,'company': company}listUser.append(user)print(listUser)return listUserif __name__ == '__main__':listUser = getAllUsers()with open('user.json', 'w', encoding='utf-8') as f:json.dump(listUser, f, ensure_ascii=False, indent=4)
大致结果数据如下:
[{"name": "爱尔法·金","head_id": "55898952","provice": "中国新疆","height": "184cm","weight": "65kg","company": "快享星合"},{"name": "艾克里里","head_id": "19441668","provice": "中国广东","height": "174cm","weight": "55kg","company": "领优经纪"},{"name": "艾力扎提","head_id": "55898954","provice": "中国新疆","height": "178cm","weight": "56kg","company": "简单快乐"},// ...
]
2)图表展示抓取到的数据
import pandas as pd
import matplotlib.pyplot as pltdf = pd.read_json('user.json')province_counts = df['provice'].value_counts().reset_index()
province_counts.columns = ['provice', 'count']
print(province_counts)# 设置字体为支持中文的字体,比如'SimHei'(黑体),确保你的系统中安装了该字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用于正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号# # 创建一个尺寸为 16x10 英寸、分辨率为 200dpi 的图形窗口
plt.figure(figsize=(16, 10), dpi=200)
plt.bar(province_counts['provice'], province_counts['count'])
plt.title('每个省份的人数')
plt.xlabel('省份')
plt.ylabel('人数')
plt.xticks(rotation=45) # 如果省份名称过长,可以旋转x轴标签以便更好地显示
plt.show()
打印如下数据
provice count
0 中国广东 14
1 中国江苏 9
2 中国山东 8
3 中国浙江 7
4 中国辽宁 7
5 中国湖南 6
6 中国四川 5
7 中国北京 5
8 中国贵州 5
9 中国河南 5
10 中国湖北 4
11 中国河北 4
12 中国重庆 3
13 中国内蒙古 3
14 中国新疆 3
15 中国安徽 3
16 中国黑龙江 2
17 中国江西 2
18 中国上海 2
19 加拿大 2
20 中国台湾 2
21 中国澳门 2
22 中国吉林 2
23 中国天津 2
24 美国 2
25 中国广西 1
26 中国甘肃 1
27 中国 1
28 中国哈尔滨 1
29 日本 1
30 中国宁夏 1
31 马来西亚 1
32 中国福建 1
33 中国云南 1
34 中国山西 1
输出图表:

参考
- https://beautifulsoup.readthedocs.io/zh-cn/v4.4.0/
- https://requests.readthedocs.io/projects/cn/zh-cn/latest/
相关文章:
【爬虫】requests 结合 BeautifulSoup抓取网页数据
一、BeautifulSoup使用步骤 BeautifulSoup 是一个用于从 HTML 或 XML 文件中提取数据的 Python 库。以下是如何使用 BeautifulSoup 来解析 HTML 并提取信息的基本步骤: 1、安装: 如果你还没有安装 BeautifulSoup,你可以使用 pip 来安装它。…...
安全测试框架 二
使用安全测试框架进行测试,可以遵循以下步骤进行,以确保测试的全面性和系统性: 一、明确测试目标和需求 确定测试的范围和重点,明确要测试的系统或应用的安全性方面的关键点和重要性。根据业务需求和安全标准,制定详…...
安徽京准-NTP网络授时服务器助力助力甘南州公共资源交易
安徽京准-NTP网络授时服务器助力助力甘南州公共资源交易 安徽京准-NTP网络授时服务器助力助力甘南州公共资源交易 2024年5月中旬,我安徽京准科技生产研发的NTP时钟服务器成功投运甘南州公共资源交易中心,为该中心的计算机网络系统及其他各业务子系统提供…...
大数据—什么是大数据?
大数据是指所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。想要更加全面地了解大数据的概念,可以从以下几个维度进行介绍: 大数据的定义: 基本…...
德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
自然语言处理扩展研究 1. 多语言研究2. 语言锚定3. 伦理问题 1. 多语言研究 多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究…...
支持向量机(SVM)中核函数的本质意义
本质上在做什么? 内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。 为什么要求核函数是对称且Gram矩阵是半正定? 核函数对应某一特征空间的内积,要求①核函数对称;②…...
SpringBoot使用jasypt实现数据库信息的脱敏,以此来保护数据库的用户名username和密码password(容易上手,详细)
1.为什么要有这个需求? 一般当我们自己练习的时候,username和password直接是爆露出来的 假如别人路过你旁边时看到了你的数据库账号密码,他跑到他的电脑打开navicat直接就是一顿连接,直接疯狂删除你的数据库,那可就废…...
Python日志配置策略
1 三种情况下都能实现日志打印: 被库 A 调用,使用库 A 的日志配置。被库 B 调用,使用库 B 的日志配置。独立运行,使用自己的日志配置。 需要实现一个灵活的日志配置策略,使得日志记录器可以根据调用者或运行环境自动…...
想学编程,什么语言最好上手?
Python是许多初学者的首选,因为它的语法简洁易懂,而且有丰富的资源和社区支持。我这里有一套编程入门教程,不仅包含了详细的视频 讲解,项目实战。如果你渴望学习编程,不妨点个关注,给个评论222,…...
binlog和redolog有什么区别
在数据库管理系统中,binlog(binary log)和 redolog(redo log)是两种重要的日志机制,它们在数据持久性和故障恢复方面扮演着关键角色。虽然它们都用于记录数据库的变化,但它们的目的和使用方式有…...
Linux笔记--ubuntu文件目录+命令行介绍
文件目录 命令行介绍 当我们在ubuntu中命令行处理位置输入ls后会显示出其所有目录,那么处理这些命令的程序就是shell,它负责接收用户的输入,并根据输入找到其他程序并运行 命令行格式 linux的命令一般由三部分组成:command命令、…...
71、最长上升子序列II
最长上升子序列II 题目描述 给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。 输入格式 第一行包含整数N。 第二行包含N个整数,表示完整序列。 输出格式 输出一个整数,表示最大长度。 数据范围 1 ≤ N ≤ 100000…...
解决必剪电脑版导出视频缺斤少两的办法
背景 前几天将电脑重置了,今天想要剪辑一下视频,于是下载了必剪,将视频、音频都调整好,导出,结果15分钟的视频只能导出很短的时长,调整参数最多也只能导出10分钟,My God! 解决 首…...
新人学习笔记之(常量)
一、什么是常量 1.常量:在程序的执行过程中,其值不能发生改变的数据 二、常量的分类 常量类型说明举例整型常量整数、负数、0123 456实型常量所有带小数点的数字1.93 18.2字符常量单引号引起来的字母、数字、英文符号S B字符串常量双引号引起来的&…...
Lua解释器裁剪
本文目录 1、引言2、文件功能3、选择需要初始化的库4、结论 文章对应视频教程: 已更新。见下方 点击图片或链接访问我的B站主页~~~ Lua解释器裁剪,很简单~ 1、引言 在嵌入式中使用lua解释器,很多时候会面临资源紧张的情况。 同时,…...
web前端设计nav:深入探索导航栏设计的艺术与技术
web前端设计nav:深入探索导航栏设计的艺术与技术 在web前端设计中,导航栏(nav)扮演着至关重要的角色,它不仅是用户浏览网站的指引,更是网站整体设计的点睛之笔。本文将从四个方面、五个方面、六个方面和七…...
分析解读NCCL_SHM_Disable与NCCL_P2P_Disable
在NVIDIA的NCCL(NVIDIA Collective Communications Library)库中,NCCL_SHM_Disable 和 NCCL_P2P_Disable 是两个重要的环境变量,它们控制着NCCL在多GPU通信中的行为和使用的通信机制。下面是对这两个环境变量的详细解读࿱…...
使用 Python 进行测试(6)Fake it...
总结 如果我有: # my_life_work.py def transform(param):return param * 2def check(param):return "bad" not in paramdef calculate(param):return len(param)def main(param, option):if option:param transform(param)if not check(param):raise ValueError(…...
Flink Watermark详解
Flink Watermark详解 一、概述 Flink Watermark是Apache Flink框架中为了处理乱序和延迟事件时间数据而引入的一种机制。在流处理中,由于数据可能不是按照事件产生的时间顺序到达的,Watermark被用来告知系统在该时间戳之前的数据已经全部到达ÿ…...
LeetCode538.把二叉搜索树转换为累加树
class Solution { public:int sum 0; TreeNode* convertBST(TreeNode* root) { if (root){convertBST(root->right);sum root->val;root->val sum;convertBST(root->left);}return root;}};...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
