当前位置: 首页 > news >正文

OpenCV图像算术位运算

一 图像相加

import cv2
import numpy as npgirl=cv2.imread('./2037548.jpg')#图像的加法运算就是矩阵的加法运算
#因此加法运算的两张图必须是相等的print(girl.shape)img=np.ones((1920,1080,3),np.uint8)*50
cv2.imshow('girl',girl)
result=cv2.add(girl,img)
cv2.imshow('result',result)
cv2.waitKey(0)

二 图像减法运算

subtract(A,B)
含义是A减B

import cv2
import numpy as npgirl=cv2.imread('./2037548.jpg')#图像的加法运算就是矩阵的加法运算
#因此加法运算的两张图必须是相等的print(girl.shape)img=np.ones((1920,1080,3),np.uint8)*50
cv2.imshow('girl',girl)
result=cv2.subtract(girl,img)
cv2.imshow('result',result)
cv2.waitKey(0)

三 图像的融合

addWeigthed(A,alpha,B,bate,gamma)

alpha和beta是权重

gamma 静态权重

四 图像位运算

import cv2
import numpy as np# 创建一张图片
img=np.zeros((200,200),np.uint8)img[50:150,50:150]=255new_img=cv2.bitwise_not(img)cv2.imshow('img',img)cv2.imshow('new_img',new_img)cv2.waitKey(0)

五 图像的与运算

import cv2
import numpy as np# 创建一张图片
img=np.zeros((200,200),np.uint8)
img2=np.zeros((200,200),np.uint8)img[20:120,20:120]=255
img2[50:150,50:150]=255new_img=cv2.bitwise_and(img,img2)cv2.imshow('img',img)cv2.imshow('new_img',new_img)cv2.waitKey(0)

六 图像的或与异或运算

bitwise_or(img1,img2)
bitwise_xor(img1,img2)

总结 添加水印

# 引入一副图片
# 要有一个Logo,需要自己创建
# 水印添加,在什么地方添加,在添加的地方变成黑色
# 利用add 将logo 与图形叠加到一起import cv2
import numpy as npgirl=cv2.imread('./2037548.jpg')# 创建LOGO
logo=np.zeros((200,200,3),np.uint8)
mask=np.zeros((200,200),np.uint8)# 绘制LOGO
logo[20:120,20:120]=[0,0,255]
logo[80:180,80:180]=[0,255,0]mask[20:120,20:120]=255
logo[80:180,80:180]=255# 对mask按位取反
m=cv2.bitwise_not(mask)# 选择girl添加logo的位置
roi=girl[0:200,0:200]# 与m进行操作
tmp=cv2.bitwise_and(roi,roi,mask=m)
dst=cv2.add(tmp,logo)girl[0:200,0:200]=dstcv2.imshow('girl',girl)
#cv2.imshow('tmp',tmp)
#how('mask',mask)
#cv2.imshow('logo',logo)
cv2.waitKey(0)

相关文章:

OpenCV图像算术位运算

一 图像相加 import cv2 import numpy as npgirlcv2.imread(./2037548.jpg)#图像的加法运算就是矩阵的加法运算 #因此加法运算的两张图必须是相等的print(girl.shape)imgnp.ones((1920,1080,3),np.uint8)*50 cv2.imshow(girl,girl) resultcv2.add(girl,img) cv2.imshow(result…...

【调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新】

调试笔记-系列文章目录 调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 文章目录 调试笔记-系列文章目录调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 前言一、调试环境操作系统:Windows 10 专业版调试环境调试目标 二、调…...

ssm宠物网站系统-计算机毕业设计源码07183

摘 要 在信息飞速发展的今天,网络已成为人们重要的信息交流平台。宠物网站每天都有大量的信息需要通过网络发布,为此,本人开发了一个基于B/S(浏览器/服务器)模式的宠物网站系统。 该系统以JJava编程语言、MySQL和SSM框…...

想上币的项目方怎么去选择交易所

在区块链和加密货币蓬勃发展的今天,许多项目方都渴望通过交易所上线其代币,以扩大影响力、提升流动性和市场认可度。然而,选择合适的交易所并非易事,它关乎项目的未来发展和市场地位。那么,对于有上币意向的项目来说&a…...

mysql如何创建并执行事件?

在 MySQL 中,事件调度器允许您在指定的时间间隔执行 SQL 语句。这类似于操作系统中的计划任务(如 cron 作业)。 前提条件 确保您的 MySQL 服务器已启用事件调度器。可以通过以下命令检查并启用: SHOW VARIABLES LIKE event_scheduler;如果返回的值是 OFF,可以通过以下命…...

k8s环境里查看containerd创建的容器对应的netns

如何查看containerd创建的容器对应的netns 要查看由 containerd 创建的容器对应的网络命名空间(netns),你可以遵循以下步骤。这个过程涉及到了解容器的 ID,以及使用 ctr 命令或其他方式来检索容器的详细信息。这里假定你已经具备…...

学习笔记——网络管理与运维——SNMP(基本配置)

四、SNMP基本配置 1、SNMP配置举例 整个华为数通学习笔记系列中,本人是以网络视频与网络文章的方式自学的,并按自己理解的方式总结了学习笔记,某些笔记段落中可能有部分文字或图片与网络中有雷同,并非抄袭。完处于学习态度&#x…...

CMake从安装到精通

目录 引言 1. CMake的安装 2. CMake的原理 3. CMake入门 3.1 CMakeLists.txt与注释 3.2 版本指定与工程描述 3.3 生成可执行程序 3.4 定义变量与指定输出路径 3.5 指定C标准 3.6 搜索文件 3.7 包含头文件 4. CMake进阶 4.1 生成动静态库 4.2 链接动静态库 4.…...

【C++】认识STL

【C】认识STL STL的概念STL的版本STL的六大组件STL的三个境界STL的缺陷 STL的概念 SLT(standard template libaray-标准模板库):是C标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个保罗数据结构与算法的软件框架。 STL的版本 原…...

力扣 50.pow(x,n)

class Solution { public: double quickMul(double x,long long N){ if(N0) return 1; double valuequickMul(x,N/2); return N%20?value*value:value*value*x; } double myPow(double x, int n) { long long Nn; return N>0?quickMul(x, N):1.0/quickMul(x, N); } };...

R可视化:微生物相对丰度或富集热图可视化

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍 热图(Heatmap)是一种数据可视化方法,它通过颜色的深浅或色调的变化来展示数据的分布和密度。在微生物学领域,热图常用于表示微生物在不同分组(如…...

Unity Maximum Allowed Timestep的说明

Maximum Allowed Timestep的说明 关于Maximum Allowed Timestep这个配置的说明,Unity有一份官方的说明。 Time-maximumDeltaTime - Unity 脚本 API 结合Unity的函数执行顺序,我们可以简单理解为: FixedUpdate在1次Update可能会执行N次&am…...

长短期记忆神经网络(LSTM)的回归预测(免费完整源代码)【MATLAB】

LSTM(Long Short-Term Memory,长短期记忆网络)是一种特殊类型的递归神经网络(RNN),专门用于处理和预测基于时间序列的数据。与传统RNN相比,LSTM在处理长期依赖问题时具有显著优势。 LSTM的基本…...

关于 python request 的 response 返回 b‘\xa3\xff\xff\x11E .....‘ 类型的数据的解决方案

最近写开发一个爬虫, 程序在本地好好的,返回的是正常的 html, 但是到了生产环境,不知道为什么返回的是一堆乱码 长这样: 查了好几天都没有进展, 对其进行各种转码均无效 今天终于找到解决办法了&#xff…...

后端高频面试题分享-用Java判断一个列表是否是另一个列表的顺序子集

问题描述 编写一个函数,该函数接受两个列表作为参数,判断第一个列表是否是第二个列表的顺序子集,返回True或False。 要求 判断一个列表是否是另一个列表的顺序子集,即第一个列表的所有元素在第二个列表需要顺序出现。列表中的元…...

【数据初步变现】论自助BI在数字化转型中如何赋能业务

引言:数字化转型要求企业更加依赖数据来指导业务决策。自助BI作为数据分析的重要工具,能够迅速、准确地从海量数据中提取有价值的信息,为企业的战略规划和业务执行提供有力支持。在数字化时代,企业需要快速响应市场变化并优化业务…...

Python 学习 第二册 第14章 网络编程

----用教授的方式学习 目录 14.1 几个网络模块 14.1.1 模块 socket 14.1.2 模块 urllib 和 urllib2 14.1.3 其他模块 14.2 SocketServer 及相关的类 14.3.1 使用 SocketServer 实现分叉和线程化 14.3.2 使用 select 和 poll 实现异步 I/O 14.4 Twisted 14.4.1 下载…...

微信 小程序应用,页面,组件的生命周期

组件生命周期 组件的生命周期:指的是组件自身的一些钩子函数,这些函数在特定的时间节点时被自动触发 组件的生命周期函数需要在 lifetimes 字段内进行声明 最重要的生命周期是 created attached detached 包含一个组件生命周期流程的最主要时间点 定…...

代码随想录算法训练营Day41|背包问题、分割等和子集

背包问题 二维 46. 携带研究材料(第六期模拟笔试) (kamacoder.com) dp数组有两维,横轴表示背包重量j(0-j),纵轴表示不同物品(0-i),dp[i][j]即表示从下标为[0-i]的物品…...

oracle SCHEDULER

从Oracle 10g开始,推荐使用DBMS_SCHEDULER包,因为它提供了更强大的功能和灵活性,包括更复杂的调度规则、依赖管理和事件驱动等 1. 用法 DBMS_SCHEDULER.CREATE_JOB (job_name IN VARCHAR2,job_type IN VARCHAR2,job_action IN VARCHAR2,…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​,覆盖应用全生命周期测试需求,主要提供五大核心能力: ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

FOPLP vs CoWoS

以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...