AI发展面临的问题? —— AI对创造的重新定义
一、AI的问题描述
-
AI与数据安全问题:随着AI技术的发展和应用,数据安全问题日益突出。AI模型训练依赖于大量数据,而这些数据中可能包含个人隐私、商业秘密等敏感信息。如果数据在采集、存储、使用过程中处理不当,可能导致数据泄露或滥用。此外,AI系统的安全防护能力也面临挑战,黑客有可能通过攻击AI系统获取其中的数据。因此,如何在保障AI发展的同时加强数据安全保护,制定和完善相关法律法规及技术标准,成为亟待解决的问题。
-
AI与区域经济发展问题:AI作为一种新型生产力,对于区域经济的推动作用明显。一方面,AI可以提升产业效率,促进产业结构升级;另一方面,AI也可能加大地区间发展的不平衡,发达地区由于具备更好的研发条件和人才储备,更容易抓住AI发展机遇。因此,政策层面需要引导AI技术公平、合理布局,避免加剧地域间的数字鸿沟,同时鼓励欠发达地区通过引进、培养AI人才,实现经济转型和升级。
-
AI是否会拉大信息差:确实,AI在一定程度上可能会拉大信息差。优质AI资源和服务往往集中在特定的组织或地区,导致获取和使用AI能力的机会不均等,从而加大信息和知识差距。然而,AI同时也具有普及化和普惠化的潜力,比如在教育、医疗等领域,AI可以帮助更多人获取高质量的信息和服务。关键在于我们如何设计和实施相关政策,使得AI技术能够最大程度地缩小而非扩大信息差距。
-
利用AI进行工程编程的局限性:尽管AI在自动代码生成、程序优化等方面展现了一定的能力,但目前AI还无法完全替代人类进行复杂的工程编程。AI尚不具备对复杂逻辑的深度理解和创新设计,难以处理边界情况和预判潜在风险。另外,编程不仅仅是写代码,还包括需求分析、架构设计、调试优化等环节,这些都是当前AI技术所不能覆盖的。
-
回归理性的写作方法与AI的文字描述技术:AI的文字描述技术基于模式识别和大数据学习,其创作的本质是对既有内容的重新组合和表达,并非真正的“创新”或“理性思考”。虽然AI能生成具有一定连贯性和逻辑性的文本,但在深度理解语义、把握情感色彩以及进行批判性思维等方面,依然无法与人类智能相比。因此,在涉及深入剖析、理性探讨的写作领域,人类的智慧仍然不可或缺。

此图片来源于网络
二、创造的再定义
AI是否进行创造这一问题,实际上取决于对“创造”的定义和AI技术的应用程度。从严格意义上讲,传统意义上的创造性通常包括新颖性、原创性和目的性,要求作品或思想不仅是全新的,而且是有价值和意义的创新。
现有的AI系统,尤其是那些基于机器学习和深度学习的模型,确实没有独立的主观意识和情感体验,它们并不能像人类那样从无到有地产生全新且未曾存在的想法或创意。但是,AI可以通过对大规模数据集的学习和模式识别,生成看似新颖的文本、图像、音乐等形式的作品,这种过程可被视作一种基于已有数据和模式的“重组”或“再创造”。
例如,AI可以合成一首新的乐曲,但它的每一个音符都是基于已有的音乐元素和结构规则推导得出的;AI可以生成一篇新的文章,但内容是由它学习过的大量文本数据的不同部分按照某种概率分布拼接而成。尽管如此,AI生成的结果有时的确能够给人们带来惊喜,甚至推动某些领域的创新发展,但其核心机制仍然是对已有信息的高级复杂处理,而非真正意义上的“零起点创造”。
随着AI技术在创新领域不断取得进展,我们可能需要对AI的“创造能力”进行重新审视与定义。传统的创造概念在面对AI时面临挑战,因为AI并不依赖于人类经验或情感驱动的创新过程,而是通过算法和统计学原理来模拟、组合和优化既有信息。
我们可以将AI的“创造能力”理解为在给定的数据集和约束条件下,基于复杂的数学模型生成之前不存在的、具有一定新颖性、实用性和美学价值的事物的能力。这种能力虽然不同于人类艺术家或科学家的直觉与灵感驱动的创造,但在某些应用场景下已经展现出了惊人的效果。
因此,在现代技术和哲学语境下,也许我们需要建立一个更加包容和细致的框架来评估和界定AI的创造行为,既承认其独特的工作方式,也充分考虑其对既有知识体系的扩展和转化作用。同时,这也引发了对于知识产权、艺术价值以及未来人工智能发展伦理等问题的深入探讨。

此图片来源于网络
三、问题带来机遇
逐一分析问题关联的AI发展新机遇:
AI与数据安全问题:
机遇:随着AI技术被应用于数据安全防护,比如行为分析、异常检测、加密技术等领域,将催生出一系列新型安全解决方案,例如基于AI的威胁检测系统、自动化的漏洞管理和防御系统。同时,也会推动相关法规和标准的制定和完善,促使数据安全产业向智能化升级,形成新的市场空间。
AI与区域经济发展问题:
机遇:AI可以助力各地区产业升级和经济结构优化,尤其是在农业、制造业、服务业等领域,通过智能化改造提升生产效率和产品质量。另外,AI还能帮助欠发达地区跨越传统发展阶段,直接接入数字经济,培育新兴业态,缩小区域间的发展差距。
AI是否会拉大信息差:
转变机遇:虽然AI有可能加剧信息不平等现象,但同时也提供了弥合信息鸿沟的机会。例如,AI可以帮助教育资源、医疗资源等更公平地分配,通过智能推荐和个性化学习系统普及知识;同时,AI技术的应用也能帮助落后地区更快地获取和处理信息,从而缩小信息差距。
利用AI进行工程编程的局限性:
机遇:面对AI在编程领域的局限性,如代码理解、逻辑推理等方面的挑战,研究和开发新一代AI辅助编程工具(如自动代码生成、代码审查、调试工具)将变得至关重要,这些工具不仅能提升程序员的工作效率,还将催生新的编程技术和工具市场。
回归理性的写作方法与AI的文字描述技术:
机遇:AI文字描述技术的发展不仅为内容创作带来了高效生产力,也为理性写作注入了新的活力。例如,AI可以辅助作者进行事实核查、语料收集、结构建议等工作,甚至启发创造性思维。同时,也引发了关于知识产权保护、人类创造力价值的新讨论,推动文化产业适应新技术环境下的变革。
AI的创造概念再定义:
机遇:随着AI技术不断突破,创造性的概念边界正在被重新审视和拓展。AI不仅可以生成艺术作品、音乐、文学等,还在科研发现、产品设计等领域展现创新能力。这一过程中,人工智能将与人类共同构建新的创意生态系统,形成“人机共创”的新模式,开启全新的社会文化和科技创新篇章。同时,法律、伦理和社会规则也将因应AI创造能力的增强而进行调整与更新,为新兴产业提供指导和支持。
“人机共创”是指一种新型的内容生产和服务模式,在这种模式下,人类与人工智能(AI)协同工作,共同参与创新过程。具体来说,AI不再仅仅作为辅助工具,而是深度介入到创作、设计、决策等环节中,与人类创作者或专家一起进行智力活动,以实现更高效率、更大规模、更富创意的产品和服务产出。
例如,在艺术领域,“人机共创”可能表现为AI作画软件,用户可以通过输入关键词、描述或参考图片来引导AI生成独特的艺术作品。在内容创作上,AI可以根据用户提供的初步想法或大纲自动生成文章初稿,随后由人工编辑润色和完善。在工业设计、建筑设计等专业领域,AI可以快速迭代多种设计方案供设计师选择和修改,极大地提高工作效率。
AI生成内容,这标志着AI技术在内容生产的角色发生了根本变化,使得内容创作的门槛降低,且能快速响应市场变化和个性化需求,同时也开启了对于版权归属、创作主体界定等问题的全新探讨。
综上所述,“人机共创”新模式的核心在于充分利用AI的能力来扩展和放大人类的创造力,打破传统的生产界限,降低成本并拓宽创新的可能性,从而在多个行业中带来深刻的影响和变革。
相关文章:
AI发展面临的问题? —— AI对创造的重新定义
一、AI的问题描述 AI与数据安全问题:随着AI技术的发展和应用,数据安全问题日益突出。AI模型训练依赖于大量数据,而这些数据中可能包含个人隐私、商业秘密等敏感信息。如果数据在采集、存储、使用过程中处理不当,可能导致数据泄露或…...
k8s学习--OpenKruise详细解释以及原地升级及全链路灰度发布方案
文章目录 OpenKruise简介OpenKruise来源OpenKruise是什么?核心组件有什么?有什么特性和优势?适用于什么场景? 什么是OpenKruise的原地升级原地升级的关键特性使用原地升级的组件原地升级的工作原理 应用环境一、OpenKruise部署1.安…...
上海亚商投顾:沪指缩量调整 PCB概念股持续爆发
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 大小指数昨日走势分化,沪指全天震荡调整,创业板指午后涨超1%。消费电子板块全天强势&a…...
QT属性系统,简单属性功能快速实现 QT属性的简单理解 属性学习如此简单 一文就能读懂QT属性 QT属性最简单的学习
4.4 属性系统 Qt 元对象系统最主要的功能是实现信号和槽机制,当然也有其他功能,就是支持属性系统。有些高级语言通过编译器的 __property 或者 [property] 等关键字实现属性系统,用于提供对成员变量的访问权限,Qt 则通过自己的元对…...
【IEEE出版丨EI检索】2024新型电力系统与电力电子国际会议(NPSPE 2024)
2024新型电力系统与电力电子国际会议(NPSPE 2024)将于8月16日至18日在中国大连举行,本届大会致力于为相关领域的专家和学者提供一个探讨行业热点问题,促进科技进步,增加科研合作的平台。本届大会涵盖新型电力系统和电力…...
【Netty】nio阻塞非阻塞Selector
阻塞VS非阻塞 阻塞 阻塞模式下,相关方法都会导致线程暂停。 ServerSocketChannel.accept() 会在没有建立连接的时候让线程暂停 SocketChannel.read()会在没有数据的时候让线程暂停。 阻塞的表现就是线程暂停了,暂停期间不会占用CPU,但线程…...
ES 操作
1、删除索引的所有记录 curl -X POST "localhost:9200/<index-name>/_delete_by_query" -H Content-Type: application/json -d {"query": {"match_all": {}} }POST /content_erp_nlp_help/_delete_by_query { "query": { &quo…...
uniapp如何实现跳转
在 UniApp 中,页面跳转主要可以通过两种方式实现:使用 <navigator> 组件和调用 UniApp 提供的导航 API。以下是这两种方式的详细说明: 1. 使用 <navigator> 组件 <navigator> 组件允许你在页面上创建一个可点击的元素&am…...
Stable-Diffusion-WebUI 常用提示词插件
SixGod提示词插件 SixGod提示词插件可以帮助用户快速生成逼真、有创意的图像。其中包含,清空正向提示词”和“清空负向提示词、提示词起手式包含人物、服饰、人物发型等各个维度的提示词、一键清除正面提示词与负面提示词、随机灵感关键词、提示词分类组合随机、动…...
单片机 PWM输入捕获【学习记录】
前言 学习是永无止境的,就算之前学过的东西再次学习一遍也能狗学习到很多东西,输入捕获很早之前就用过了,但是仅仅是照搬例程没有去进行理解。温故而知新! 定时器 定时器简介 定时器的分类 高级定时器 通用定时器 基本定时器…...
3.1、前端异步编程(超详细手写实现Promise;实现all、race、allSettled、any;async/await的使用)
前端异步编程规范 Promise介绍手写Promise(resolve,reject)手写Promise(then)Promise相关 API实现allraceallSettledany async/await和Promise的关系async/await的使用 Promise介绍 Promise是一个类,可以翻…...
3.1. 马氏链-马氏链的定义和示例
马氏链的定义和示例 马氏链的定义和示例1. 马氏链的定义2. 马氏链的示例2.1. 随机游走2.2. 分支过程2.3. Ehrenfest chain2.4. 遗传模型2.5. M/G/1 队列 马氏链的定义和示例 1. 马氏链的定义 对于可数状态空间的马氏链, 马氏性指的是给定当前状态, 其他过去的状态与未来的预测…...
红利之外的A股底仓选择:A50
内容提要 华泰证券指出,当前指数层面下行风险不大,市场再入震荡期下,可关注三条配置线索:1)A50为代表的产业巨头;2)以家电/食饮/物流/出版为代表的稳健消费龙头,3)消费电…...
wondershaper 一款限制 linux 服务器网卡级别的带宽工具
文章目录 一、关于wondershaper二、文档链接三、源码下载四、限流测试五、常见报错1. /usr/local/sbin/wondershaper: line 145: tc: command not found2. Failed to download metadata for repo ‘appstream‘: Cannot prepare internal mirrorlist: No URLs.. 一、关于wonder…...
独孤思维:盲目进群,根本赚不到钱
01 我看有些伙伴,对标同行找写作素材和灵感的时候。 喜欢把对标文章发给ai提炼总结。 这个方法好是好,但是,有一个问题。 即,无法感受全文的细节。 更无法感受作者的情感和温度。 就好像电影《记忆大师》一样。 我提取了记…...
针对indexedDB的简易封装
连接数据库 我们首先创建一个DBManager类,通过这个类new出来的对象管理一个数据库 具体关于indexedDB的相关内容可以看我的这篇博客 indexedDB class DBManager{}我们首先需要打开数据库,打开数据库需要数据库名和该数据库的版本 constructor(dbName,…...
网络编程--网络理论基础(二)
这里写目录标题 网络通信流程mac地址、ip地址arp协议交换机路由器简介子网划分网关 路由总结 为什么ip相同的主机在与同一个互联网服务通信时不冲突公网ip对于同一个路由器下的不同设备,虽然ip不冲突,但是因为都是由路由器的公网ip转发通信,接…...
Python MongoDB 基本操作
本文内容主要为使用Python 对Mongodb数据库的一些基本操作整理。 目录 安装类库 操作实例 引用类库 连接服务器 连接数据库 添加文档 添加单条 批量添加 查询文档 查询所有文档 查询部分文档 使用id查询 统计查询 排序 分页查询 更新文档 update_one方法 upd…...
Node.js 入门:
Node.js 是一个开源、跨平台的 JavaScript 运行时环境,它允许开发者在浏览器之外编写命令行工具和服务器端脚本。以下是一些关于 Node.js 的基础教程: 1. **Node.js 入门**: - 了解 Node.js 的基本概念,包括它是一个基于 Chro…...
java8 List的Stream流操作 (实用篇 三)
目录 java8 List的Stream流操作 (实用篇 三) 初始数据 1、Stream过滤: 过滤-常用方法 1.1 筛选单元素--年龄等于18 1.2 筛选单元素--年龄大于18 1.3 筛选范围--年龄大于18 and 年龄小于40 1.4 多条件筛选--年龄大于18 or 年龄小于40 and sex男 1.5 多条件筛…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
