【Python】 了解二分类:机器学习中的基础任务
我已经从你的 全世界路过
像一颗流星 划过命运 的天空
很多话忍住了 不能说出口
珍藏在 我的心中
只留下一些回忆
🎵 牛奶咖啡《从你的全世界路过》
在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分类和二分类。本文将重点介绍二分类,解释其概念、应用场景、常用算法以及实际案例。
什么是二分类?
二分类(Binary Classification)是指将数据分为两类的一种分类任务。换句话说,模型的输出只有两个类别。这两个类别通常被表示为 0 和 1,或者 -1 和 1,代表两个不同的类别或状态。
示例
以下是一些常见的二分类问题:
- 垃圾邮件检测:将电子邮件分类为“垃圾邮件”或“正常邮件”。
- 疾病预测:根据医疗数据预测患者是否患有某种疾病(如癌症)。
- 客户流失预测:预测客户是否会取消订阅服务。
- 信用卡欺诈检测:判断一笔交易是否为欺诈行为。
二分类的应用场景
二分类在各种领域中都有广泛的应用,以下是一些典型的应用场景:
医疗健康
在医疗健康领域,二分类模型可以用来预测患者是否患有某种疾病。例如,通过分析患者的体检数据,预测他们是否患有糖尿病。
电子邮件过滤
在电子邮件系统中,二分类模型被用来检测垃圾邮件。模型通过学习垃圾邮件和正常邮件的特征,将新邮件分类到相应的类别。
金融欺诈检测
在金融行业,二分类模型用于检测信用卡欺诈行为。通过分析交易数据,模型可以判断一笔交易是否具有欺诈风险。
客户流失预测
在市场营销中,二分类模型用于预测客户是否会流失。通过分析客户的行为数据,企业可以采取措施挽留即将流失的客户。
常用的二分类算法
- 逻辑回归(Logistic Regression)
逻辑回归是一种线性模型,适用于二分类问题。它通过学习输入特征和输出之间的关系,预测样本属于某个类别的概率。
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 生成示例数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测并计算准确率
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
-
支持向量机(Support Vector Machine, SVM)
SVM 是一种强大的分类算法,通过寻找最佳分隔超平面来区分不同类别的样本。它在高维空间中表现良好,尤其适用于复杂的分类任务。 -
决策树(Decision Tree)
决策树通过一系列的决策规则将数据划分为不同的类别。它简单易理解,但容易过拟合,可以结合集成方法(如随机森林和梯度提升)提高性能。 -
k 近邻算法(k-Nearest Neighbors, k-NN)
k-NN 是一种基于实例的学习算法,通过测量样本之间的距离,将新样本归类到其 k 个最近邻样本中出现次数最多的类别。 -
神经网络(Neural Networks)
神经网络,尤其是深度学习模型,在处理复杂的二分类任务时表现出色。它们可以捕捉到数据中的非线性关系,适用于大规模数据集。
实际案例:信用卡欺诈检测
下面是一个使用逻辑回归进行信用卡欺诈检测的简单示例。
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score# 读取数据
data = pd.read_csv('creditcard.csv')# 特征选择和数据预处理
X = data.drop('Class', axis=1)
y = data['Class']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)# 预测并计算性能指标
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
评价二分类模型的指标
在评估二分类模型时,有几种常用的指标:
- 准确率(Accuracy):正确预测的样本数量占总样本数量的比例。
- 精确率(Precision):正确预测的正样本数量占预测为正样本的数量的比例。
- 召回率(Recall):正确预测的正样本数量占实际正样本数量的比例。
- F1 分数(F1 Score):精确率和召回率的调和平均数,综合考虑了精确率和召回率。
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print(f"Confusion Matrix:\n{cm}")# 计算精确率、召回率和 F1 分数
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")
结语
二分类是机器学习中一个基础而重要的任务,广泛应用于各种实际场景中。通过理解二分类的概念、常用算法及其应用,你可以更好地构建和优化二分类模型,解决实际问题。希望本文能帮助你深入了解二分类,并在实际项目中有效应用这些知识。
Happy Learning!
相关文章:
【Python】 了解二分类:机器学习中的基础任务
我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 🎵 牛奶咖啡《从你的全世界路过》 在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分…...
搭建PHP开发环境:Linux篇
目录 一、引言 二、环境准备 三、安装Web服务器(Apache) Ubuntu/Debian系统: CentOS/Red Hat系统: 四、安装PHP解释器 Ubuntu/Debian系统: CentOS/Red Hat系统: 五、配置Apache以支持PHP Ubuntu/…...
ROS 自动驾驶多点巡航
ROS 自动驾驶多点巡航: 1、首先创建工作空间: 基于我们的artca_ws; 2、创建功能包: 进入src目录,输入命令: catkin_create_pkg point_pkg std_msgs rospy roscpptest_pkg 为功能包名,后面两个是依赖&a…...
SQL学习,大厂面试真题(1):观看各个视频的平均完播率
各个视频的平均完播率 1、视频信息表 IDAuthorNameCategoryAgeStart Time1张三影视302024-01-01 7:00:002李四美食602024-01-01 7:00:003王麻子旅游902024-01-01 7:00:00 (video_id-视频ID, AuthorName-创作者, tag-类别标签, duration-视频时长(秒&…...
2023年全国大学生数学建模竞赛C题蔬菜类商品的自动定价与补货决策(含word论文和源代码资源)
文章目录 一、题目二、word版实验报告和源代码(两种获取方式) 一、题目 2023高教社杯全国大学生数学建模竞赛题目 C题 蔬菜类商品的自动定价与补货决策 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而…...
inpaint下载安装2024-inpaint软件安装包下载v5.0.6官网最新版附加详细安装步骤
Inpaint软件最新版是一款功能强大的图片去水印软件,这款软件拥有强大的智能算法,能够根据照片的背景为用户去除照片中的各种水印,并修补好去除水印后的图片。并且软件操作简单、界面清爽,即使是修图新手也能够轻松上手,…...
分享三个仓库
Hello , 我是恒。大概有半个月没有发文章了,都写在文档里了 今天分享三个我开源的项目,比较小巧但是有用 主页 文档导航 Github地址: https://github.com/lmliheng/document 在线访问:http://document.liheng.work/ 里面有各种作者书写的文档ÿ…...
MacOS - 启动台多了个『卸载 Adobe Photoshop』
问题描述 今天安装好了 Adobe Ps,但是发现启动台多了个『卸载 Adobe Photoshop』强迫症又犯了,想把它干掉! 解决方案 打开访达 - 前往 - 资源库,搜索要卸载的名字就可以看到,然后移除到垃圾筐...
PHP 日期处理完全指南
PHP 日期处理完全指南 引言 在PHP开发中,日期和时间处理是一个常见且重要的任务。PHP提供了丰富的内置函数来处理日期和时间,包括日期的格式化、计算、解析等。本文将详细介绍PHP中日期处理的相关知识,帮助读者全面理解和掌握这一技能。 1. PHP日期函数基础 1.1 date()函…...
KVB:怎么样选择最优交易周期?
摘要 在金融交易中,周期的选择是影响交易成败的重要因素之一。不同的交易周期对应不同的市场环境和交易策略,选择合适的周期可以提高交易的成功率。本文将详细探讨交易中如何选择最优周期,包括短周期、中周期和长周期的特点及适用情况&#…...
前端面试题日常练-day69 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 TypeScript中,以下哪个关键字用于声明一个变量的类型为联合类型? a) union b) any c) all d) | 在TypeScript中,以下哪个符号用于声明一个变量的类型为对象类型&am…...
Java 解析xml文件-工具类
Java 解析xml文件-工具类 简述 Java解析xml文件,对应的Javabean是根据xml中的节点来创建,如SeexmlZbomord、SeexmlIdoc等等 工具类代码 import cn.hutool.core.io.FileUtil; import com.alibaba.cloud.commons.io.IOUtils; import com.seexml.bom.Se…...
PyQt5学习系列之新项目创建并使用widget
PyQt5学习系列之新项目创建并使用widget 前言报错新建项目程序完整程序总结 前言 新建项目,再使用ui转py,无论怎么样都打不开py文件,直接报错。 报错 Connected to pydev debugger (build 233.11799.298)新建项目程序 # Press ShiftF10 to…...
mtk8675 安卓端assert函数的坑
8675 安卓端, assert(pthread_mutex_init(&mutex_data_, &mattr) 0);用这行代码发现pthread_mutex_init函数没有被调用,反汇编发现不光没调用assert,pthread_mutex_init也没调用。直接pthread_mutex_init(&mutex_data_, &ma…...
编程入门笔记:从基础到进阶的探索之旅
编程入门笔记:从基础到进阶的探索之旅 编程,作为现代科技的基石,正日益渗透到我们生活的方方面面。对于初学者来说,掌握编程技能不仅有助于提升解决问题的能力,还能开启通往创新世界的大门。本篇文章将从四个方面、五…...
小规模自建 Elasticsearch 的部署及优化
本文将详细介绍如何在 CentOS 7 操作系统上部署并优化 Elasticsearch 5.3.0,以承载千万级后端服务的数据采集。要使用Elasticsearch至少需要三台独立的服务器,本文所用服务器配置为4核8G的ECS云服务器,其中一台作为 master + data 节点、一台作为 client + data 节点、最后一…...
MySQL 示例数据库大全
前言: 我们练习 SQL 时,总会自己创造一些测试数据或者网上找些案例来学习,其实 MySQL 官方提供了好几个示例数据库,在 MySQL 的学习、开发和实践中具有非常重要的作用,能够帮助初学者更好地理解和应用 MySQL 的各种功…...
VirtualBox、Centos7下安装docker后pull镜像问题、ftp上传文件问题
Docker安装篇(CentOS7安装)_docker 安装 centos7-CSDN博客 首先,安装docker可以根据这篇文章进行安装,安装完之后,我们就需要去通过docker拉取相关的服务镜像,然后安装相应的服务容器,比如我们通过docker来安装mysql,…...
链表 题目汇总
237. 删除链表中的节点...
grafana连接influxdb2.x做数据大盘
连接influxdb 展示数据 新建仪表盘 选择存储库 设置展示...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
