当前位置: 首页 > news >正文

【Python】 了解二分类:机器学习中的基础任务


我已经从你的 全世界路过
像一颗流星 划过命运 的天空
很多话忍住了 不能说出口
珍藏在 我的心中
只留下一些回忆
                     🎵 牛奶咖啡《从你的全世界路过》


在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分类和二分类。本文将重点介绍二分类,解释其概念、应用场景、常用算法以及实际案例。

什么是二分类?

二分类(Binary Classification)是指将数据分为两类的一种分类任务。换句话说,模型的输出只有两个类别。这两个类别通常被表示为 0 和 1,或者 -1 和 1,代表两个不同的类别或状态。

示例

以下是一些常见的二分类问题:

  • 垃圾邮件检测:将电子邮件分类为“垃圾邮件”或“正常邮件”。
  • 疾病预测:根据医疗数据预测患者是否患有某种疾病(如癌症)。
  • 客户流失预测:预测客户是否会取消订阅服务。
  • 信用卡欺诈检测:判断一笔交易是否为欺诈行为。

二分类的应用场景

二分类在各种领域中都有广泛的应用,以下是一些典型的应用场景:

医疗健康

在医疗健康领域,二分类模型可以用来预测患者是否患有某种疾病。例如,通过分析患者的体检数据,预测他们是否患有糖尿病。

电子邮件过滤

在电子邮件系统中,二分类模型被用来检测垃圾邮件。模型通过学习垃圾邮件和正常邮件的特征,将新邮件分类到相应的类别。

金融欺诈检测

在金融行业,二分类模型用于检测信用卡欺诈行为。通过分析交易数据,模型可以判断一笔交易是否具有欺诈风险。

客户流失预测

在市场营销中,二分类模型用于预测客户是否会流失。通过分析客户的行为数据,企业可以采取措施挽留即将流失的客户。

常用的二分类算法

  1. 逻辑回归(Logistic Regression)
    逻辑回归是一种线性模型,适用于二分类问题。它通过学习输入特征和输出之间的关系,预测样本属于某个类别的概率。
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 生成示例数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测并计算准确率
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
  1. 支持向量机(Support Vector Machine, SVM)
    SVM 是一种强大的分类算法,通过寻找最佳分隔超平面来区分不同类别的样本。它在高维空间中表现良好,尤其适用于复杂的分类任务。

  2. 决策树(Decision Tree)
    决策树通过一系列的决策规则将数据划分为不同的类别。它简单易理解,但容易过拟合,可以结合集成方法(如随机森林和梯度提升)提高性能。

  3. k 近邻算法(k-Nearest Neighbors, k-NN)
    k-NN 是一种基于实例的学习算法,通过测量样本之间的距离,将新样本归类到其 k 个最近邻样本中出现次数最多的类别。

  4. 神经网络(Neural Networks)
    神经网络,尤其是深度学习模型,在处理复杂的二分类任务时表现出色。它们可以捕捉到数据中的非线性关系,适用于大规模数据集。

实际案例:信用卡欺诈检测

下面是一个使用逻辑回归进行信用卡欺诈检测的简单示例。

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score# 读取数据
data = pd.read_csv('creditcard.csv')# 特征选择和数据预处理
X = data.drop('Class', axis=1)
y = data['Class']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)# 预测并计算性能指标
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

评价二分类模型的指标

在评估二分类模型时,有几种常用的指标:

  • 准确率(Accuracy):正确预测的样本数量占总样本数量的比例。
  • 精确率(Precision):正确预测的正样本数量占预测为正样本的数量的比例。
  • 召回率(Recall):正确预测的正样本数量占实际正样本数量的比例。
  • F1 分数(F1 Score):精确率和召回率的调和平均数,综合考虑了精确率和召回率。
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print(f"Confusion Matrix:\n{cm}")# 计算精确率、召回率和 F1 分数
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

结语

二分类是机器学习中一个基础而重要的任务,广泛应用于各种实际场景中。通过理解二分类的概念、常用算法及其应用,你可以更好地构建和优化二分类模型,解决实际问题。希望本文能帮助你深入了解二分类,并在实际项目中有效应用这些知识。

Happy Learning!

相关文章:

【Python】 了解二分类:机器学习中的基础任务

我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 🎵 牛奶咖啡《从你的全世界路过》 在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分…...

搭建PHP开发环境:Linux篇

目录 一、引言 二、环境准备 三、安装Web服务器(Apache) Ubuntu/Debian系统: CentOS/Red Hat系统: 四、安装PHP解释器 Ubuntu/Debian系统: CentOS/Red Hat系统: 五、配置Apache以支持PHP Ubuntu/…...

ROS 自动驾驶多点巡航

ROS 自动驾驶多点巡航: 1、首先创建工作空间: 基于我们的artca_ws; 2、创建功能包: 进入src目录,输入命令: catkin_create_pkg point_pkg std_msgs rospy roscpptest_pkg 为功能包名,后面两个是依赖&a…...

SQL学习,大厂面试真题(1):观看各个视频的平均完播率

各个视频的平均完播率 1、视频信息表 IDAuthorNameCategoryAgeStart Time1张三影视302024-01-01 7:00:002李四美食602024-01-01 7:00:003王麻子旅游902024-01-01 7:00:00 (video_id-视频ID, AuthorName-创作者, tag-类别标签, duration-视频时长(秒&…...

2023年全国大学生数学建模竞赛C题蔬菜类商品的自动定价与补货决策(含word论文和源代码资源)

文章目录 一、题目二、word版实验报告和源代码(两种获取方式) 一、题目 2023高教社杯全国大学生数学建模竞赛题目 C题 蔬菜类商品的自动定价与补货决策 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而…...

inpaint下载安装2024-inpaint软件安装包下载v5.0.6官网最新版附加详细安装步骤

Inpaint软件最新版是一款功能强大的图片去水印软件,这款软件拥有强大的智能算法,能够根据照片的背景为用户去除照片中的各种水印,并修补好去除水印后的图片。并且软件操作简单、界面清爽,即使是修图新手也能够轻松上手&#xff0c…...

分享三个仓库

Hello , 我是恒。大概有半个月没有发文章了,都写在文档里了 今天分享三个我开源的项目,比较小巧但是有用 主页 文档导航 Github地址: https://github.com/lmliheng/document 在线访问:http://document.liheng.work/ 里面有各种作者书写的文档&#xff…...

MacOS - 启动台多了个『卸载 Adobe Photoshop』

问题描述 今天安装好了 Adobe Ps,但是发现启动台多了个『卸载 Adobe Photoshop』强迫症又犯了,想把它干掉! 解决方案 打开访达 - 前往 - 资源库,搜索要卸载的名字就可以看到,然后移除到垃圾筐...

PHP 日期处理完全指南

PHP 日期处理完全指南 引言 在PHP开发中,日期和时间处理是一个常见且重要的任务。PHP提供了丰富的内置函数来处理日期和时间,包括日期的格式化、计算、解析等。本文将详细介绍PHP中日期处理的相关知识,帮助读者全面理解和掌握这一技能。 1. PHP日期函数基础 1.1 date()函…...

KVB:怎么样选择最优交易周期?

摘要 在金融交易中,周期的选择是影响交易成败的重要因素之一。不同的交易周期对应不同的市场环境和交易策略,选择合适的周期可以提高交易的成功率。本文将详细探讨交易中如何选择最优周期,包括短周期、中周期和长周期的特点及适用情况&#…...

前端面试题日常练-day69 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 TypeScript中,以下哪个关键字用于声明一个变量的类型为联合类型? a) union b) any c) all d) | 在TypeScript中,以下哪个符号用于声明一个变量的类型为对象类型&am…...

Java 解析xml文件-工具类

Java 解析xml文件-工具类 简述 Java解析xml文件,对应的Javabean是根据xml中的节点来创建,如SeexmlZbomord、SeexmlIdoc等等 工具类代码 import cn.hutool.core.io.FileUtil; import com.alibaba.cloud.commons.io.IOUtils; import com.seexml.bom.Se…...

PyQt5学习系列之新项目创建并使用widget

PyQt5学习系列之新项目创建并使用widget 前言报错新建项目程序完整程序总结 前言 新建项目,再使用ui转py,无论怎么样都打不开py文件,直接报错。 报错 Connected to pydev debugger (build 233.11799.298)新建项目程序 # Press ShiftF10 to…...

mtk8675 安卓端assert函数的坑

8675 安卓端, assert(pthread_mutex_init(&mutex_data_, &mattr) 0);用这行代码发现pthread_mutex_init函数没有被调用,反汇编发现不光没调用assert,pthread_mutex_init也没调用。直接pthread_mutex_init(&mutex_data_, &ma…...

编程入门笔记:从基础到进阶的探索之旅

编程入门笔记:从基础到进阶的探索之旅 编程,作为现代科技的基石,正日益渗透到我们生活的方方面面。对于初学者来说,掌握编程技能不仅有助于提升解决问题的能力,还能开启通往创新世界的大门。本篇文章将从四个方面、五…...

小规模自建 Elasticsearch 的部署及优化

本文将详细介绍如何在 CentOS 7 操作系统上部署并优化 Elasticsearch 5.3.0,以承载千万级后端服务的数据采集。要使用Elasticsearch至少需要三台独立的服务器,本文所用服务器配置为4核8G的ECS云服务器,其中一台作为 master + data 节点、一台作为 client + data 节点、最后一…...

MySQL 示例数据库大全

前言: 我们练习 SQL 时,总会自己创造一些测试数据或者网上找些案例来学习,其实 MySQL 官方提供了好几个示例数据库,在 MySQL 的学习、开发和实践中具有非常重要的作用,能够帮助初学者更好地理解和应用 MySQL 的各种功…...

VirtualBox、Centos7下安装docker后pull镜像问题、ftp上传文件问题

Docker安装篇(CentOS7安装)_docker 安装 centos7-CSDN博客 首先,安装docker可以根据这篇文章进行安装,安装完之后,我们就需要去通过docker拉取相关的服务镜像,然后安装相应的服务容器,比如我们通过docker来安装mysql,…...

链表 题目汇总

237. 删除链表中的节点...

grafana连接influxdb2.x做数据大盘

连接influxdb 展示数据 新建仪表盘 选择存储库 设置展示...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制&#xff0…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...