【Python】 了解二分类:机器学习中的基础任务
我已经从你的 全世界路过
像一颗流星 划过命运 的天空
很多话忍住了 不能说出口
珍藏在 我的心中
只留下一些回忆
🎵 牛奶咖啡《从你的全世界路过》
在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分类和二分类。本文将重点介绍二分类,解释其概念、应用场景、常用算法以及实际案例。
什么是二分类?
二分类(Binary Classification)是指将数据分为两类的一种分类任务。换句话说,模型的输出只有两个类别。这两个类别通常被表示为 0 和 1,或者 -1 和 1,代表两个不同的类别或状态。
示例
以下是一些常见的二分类问题:
- 垃圾邮件检测:将电子邮件分类为“垃圾邮件”或“正常邮件”。
- 疾病预测:根据医疗数据预测患者是否患有某种疾病(如癌症)。
- 客户流失预测:预测客户是否会取消订阅服务。
- 信用卡欺诈检测:判断一笔交易是否为欺诈行为。
二分类的应用场景
二分类在各种领域中都有广泛的应用,以下是一些典型的应用场景:
医疗健康
在医疗健康领域,二分类模型可以用来预测患者是否患有某种疾病。例如,通过分析患者的体检数据,预测他们是否患有糖尿病。
电子邮件过滤
在电子邮件系统中,二分类模型被用来检测垃圾邮件。模型通过学习垃圾邮件和正常邮件的特征,将新邮件分类到相应的类别。
金融欺诈检测
在金融行业,二分类模型用于检测信用卡欺诈行为。通过分析交易数据,模型可以判断一笔交易是否具有欺诈风险。
客户流失预测
在市场营销中,二分类模型用于预测客户是否会流失。通过分析客户的行为数据,企业可以采取措施挽留即将流失的客户。
常用的二分类算法
- 逻辑回归(Logistic Regression)
逻辑回归是一种线性模型,适用于二分类问题。它通过学习输入特征和输出之间的关系,预测样本属于某个类别的概率。
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 生成示例数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测并计算准确率
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
-
支持向量机(Support Vector Machine, SVM)
SVM 是一种强大的分类算法,通过寻找最佳分隔超平面来区分不同类别的样本。它在高维空间中表现良好,尤其适用于复杂的分类任务。 -
决策树(Decision Tree)
决策树通过一系列的决策规则将数据划分为不同的类别。它简单易理解,但容易过拟合,可以结合集成方法(如随机森林和梯度提升)提高性能。 -
k 近邻算法(k-Nearest Neighbors, k-NN)
k-NN 是一种基于实例的学习算法,通过测量样本之间的距离,将新样本归类到其 k 个最近邻样本中出现次数最多的类别。 -
神经网络(Neural Networks)
神经网络,尤其是深度学习模型,在处理复杂的二分类任务时表现出色。它们可以捕捉到数据中的非线性关系,适用于大规模数据集。
实际案例:信用卡欺诈检测
下面是一个使用逻辑回归进行信用卡欺诈检测的简单示例。
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score# 读取数据
data = pd.read_csv('creditcard.csv')# 特征选择和数据预处理
X = data.drop('Class', axis=1)
y = data['Class']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练逻辑回归模型
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)# 预测并计算性能指标
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
评价二分类模型的指标
在评估二分类模型时,有几种常用的指标:
- 准确率(Accuracy):正确预测的样本数量占总样本数量的比例。
- 精确率(Precision):正确预测的正样本数量占预测为正样本的数量的比例。
- 召回率(Recall):正确预测的正样本数量占实际正样本数量的比例。
- F1 分数(F1 Score):精确率和召回率的调和平均数,综合考虑了精确率和召回率。
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print(f"Confusion Matrix:\n{cm}")# 计算精确率、召回率和 F1 分数
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")
结语
二分类是机器学习中一个基础而重要的任务,广泛应用于各种实际场景中。通过理解二分类的概念、常用算法及其应用,你可以更好地构建和优化二分类模型,解决实际问题。希望本文能帮助你深入了解二分类,并在实际项目中有效应用这些知识。
Happy Learning!
相关文章:

【Python】 了解二分类:机器学习中的基础任务
我已经从你的 全世界路过 像一颗流星 划过命运 的天空 很多话忍住了 不能说出口 珍藏在 我的心中 只留下一些回忆 🎵 牛奶咖啡《从你的全世界路过》 在机器学习和数据科学领域,分类问题是最常见的任务之一。分类问题可以分为多类分…...

搭建PHP开发环境:Linux篇
目录 一、引言 二、环境准备 三、安装Web服务器(Apache) Ubuntu/Debian系统: CentOS/Red Hat系统: 四、安装PHP解释器 Ubuntu/Debian系统: CentOS/Red Hat系统: 五、配置Apache以支持PHP Ubuntu/…...

ROS 自动驾驶多点巡航
ROS 自动驾驶多点巡航: 1、首先创建工作空间: 基于我们的artca_ws; 2、创建功能包: 进入src目录,输入命令: catkin_create_pkg point_pkg std_msgs rospy roscpptest_pkg 为功能包名,后面两个是依赖&a…...

SQL学习,大厂面试真题(1):观看各个视频的平均完播率
各个视频的平均完播率 1、视频信息表 IDAuthorNameCategoryAgeStart Time1张三影视302024-01-01 7:00:002李四美食602024-01-01 7:00:003王麻子旅游902024-01-01 7:00:00 (video_id-视频ID, AuthorName-创作者, tag-类别标签, duration-视频时长(秒&…...

2023年全国大学生数学建模竞赛C题蔬菜类商品的自动定价与补货决策(含word论文和源代码资源)
文章目录 一、题目二、word版实验报告和源代码(两种获取方式) 一、题目 2023高教社杯全国大学生数学建模竞赛题目 C题 蔬菜类商品的自动定价与补货决策 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而…...

inpaint下载安装2024-inpaint软件安装包下载v5.0.6官网最新版附加详细安装步骤
Inpaint软件最新版是一款功能强大的图片去水印软件,这款软件拥有强大的智能算法,能够根据照片的背景为用户去除照片中的各种水印,并修补好去除水印后的图片。并且软件操作简单、界面清爽,即使是修图新手也能够轻松上手,…...

分享三个仓库
Hello , 我是恒。大概有半个月没有发文章了,都写在文档里了 今天分享三个我开源的项目,比较小巧但是有用 主页 文档导航 Github地址: https://github.com/lmliheng/document 在线访问:http://document.liheng.work/ 里面有各种作者书写的文档ÿ…...

MacOS - 启动台多了个『卸载 Adobe Photoshop』
问题描述 今天安装好了 Adobe Ps,但是发现启动台多了个『卸载 Adobe Photoshop』强迫症又犯了,想把它干掉! 解决方案 打开访达 - 前往 - 资源库,搜索要卸载的名字就可以看到,然后移除到垃圾筐...

PHP 日期处理完全指南
PHP 日期处理完全指南 引言 在PHP开发中,日期和时间处理是一个常见且重要的任务。PHP提供了丰富的内置函数来处理日期和时间,包括日期的格式化、计算、解析等。本文将详细介绍PHP中日期处理的相关知识,帮助读者全面理解和掌握这一技能。 1. PHP日期函数基础 1.1 date()函…...

KVB:怎么样选择最优交易周期?
摘要 在金融交易中,周期的选择是影响交易成败的重要因素之一。不同的交易周期对应不同的市场环境和交易策略,选择合适的周期可以提高交易的成功率。本文将详细探讨交易中如何选择最优周期,包括短周期、中周期和长周期的特点及适用情况&#…...

前端面试题日常练-day69 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 TypeScript中,以下哪个关键字用于声明一个变量的类型为联合类型? a) union b) any c) all d) | 在TypeScript中,以下哪个符号用于声明一个变量的类型为对象类型&am…...

Java 解析xml文件-工具类
Java 解析xml文件-工具类 简述 Java解析xml文件,对应的Javabean是根据xml中的节点来创建,如SeexmlZbomord、SeexmlIdoc等等 工具类代码 import cn.hutool.core.io.FileUtil; import com.alibaba.cloud.commons.io.IOUtils; import com.seexml.bom.Se…...

PyQt5学习系列之新项目创建并使用widget
PyQt5学习系列之新项目创建并使用widget 前言报错新建项目程序完整程序总结 前言 新建项目,再使用ui转py,无论怎么样都打不开py文件,直接报错。 报错 Connected to pydev debugger (build 233.11799.298)新建项目程序 # Press ShiftF10 to…...

mtk8675 安卓端assert函数的坑
8675 安卓端, assert(pthread_mutex_init(&mutex_data_, &mattr) 0);用这行代码发现pthread_mutex_init函数没有被调用,反汇编发现不光没调用assert,pthread_mutex_init也没调用。直接pthread_mutex_init(&mutex_data_, &ma…...

编程入门笔记:从基础到进阶的探索之旅
编程入门笔记:从基础到进阶的探索之旅 编程,作为现代科技的基石,正日益渗透到我们生活的方方面面。对于初学者来说,掌握编程技能不仅有助于提升解决问题的能力,还能开启通往创新世界的大门。本篇文章将从四个方面、五…...

小规模自建 Elasticsearch 的部署及优化
本文将详细介绍如何在 CentOS 7 操作系统上部署并优化 Elasticsearch 5.3.0,以承载千万级后端服务的数据采集。要使用Elasticsearch至少需要三台独立的服务器,本文所用服务器配置为4核8G的ECS云服务器,其中一台作为 master + data 节点、一台作为 client + data 节点、最后一…...

MySQL 示例数据库大全
前言: 我们练习 SQL 时,总会自己创造一些测试数据或者网上找些案例来学习,其实 MySQL 官方提供了好几个示例数据库,在 MySQL 的学习、开发和实践中具有非常重要的作用,能够帮助初学者更好地理解和应用 MySQL 的各种功…...

VirtualBox、Centos7下安装docker后pull镜像问题、ftp上传文件问题
Docker安装篇(CentOS7安装)_docker 安装 centos7-CSDN博客 首先,安装docker可以根据这篇文章进行安装,安装完之后,我们就需要去通过docker拉取相关的服务镜像,然后安装相应的服务容器,比如我们通过docker来安装mysql,…...

链表 题目汇总
237. 删除链表中的节点...

grafana连接influxdb2.x做数据大盘
连接influxdb 展示数据 新建仪表盘 选择存储库 设置展示...

Java证件识别中的身份证识别接口
现如今,越来越多的互联网应用需要对身份证进行实名认证,但不知道大家有没有发现,从最初的手动录入身份证信息转变到了现在的图片上传自动识别呢?其实,这都是因为集成了身份证识别接口功能,今天,…...

迷你小风扇哪个品牌好?迷你小风扇前十名公开揭晓!
随着夏日的炎热袭来,迷你小风扇成为了许多人随身携带的清凉利器。无论是在办公室、户外活动,还是在旅行途中,迷你小风扇都以其小巧便携、强劲风力和持久续航的优势,迅速俘获了大批用户的喜爱。然而,市面上迷你小风扇品…...

MikroTik RouterOS 授权签名验证分析
MikroTik 软路由 百科https://baike.baidu.com/item/mikrotik/9776775官网https://mikrotik.com/ 授权文件分析 -----BEGIN MIKROTIK SOFTWARE KEY------------ mr3jH5qhn9irtF53ZICFTN7Tk7wIx7ZkxdAxJ19ydASY ShhFteHMntBTyaS8wuNdIJJPidJxbuNPLTvCsv7zLA …...

C#开发-集合使用和技巧(六)特殊转换方法SelectMany的介绍和用法
介绍 SelectMany 方法在C#中用于将集合中的元素转换为其他类型的集合,并将这些集合扁平化为一个单一的序列。它是LINQ的一部分,允许你在一个序列上进行投影和过滤操作,然后将结果合并成一个序列。 方法定义 public static IEnumerable<…...

高考后的抉择:如何在心仪专业与知名学校之间做出选择?
目录 前言1. 专业选择的深度探讨1.1 专业的优势与挑战1.1.1 课程学习1.1.2 就业前景 1.2 专业选择的个人经验与思考 2. 名校对个人发展的长短期影响2.1 名校声誉的品牌效应2.1.1 职业发展2.1.2 社会认可度 2.2 教育资源与学术氛围2.2.1 教育资源2.2.2 学术氛围 2.3 就业优势 3.…...

黄仁勋提到的机器人世界,还需要AI数据来“调教” | CVPR 2024
本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。 从研究主题来看,具身智能这一大热点值得关注。 黄仁勋在COMPUTEX大会开幕前夕的演讲中预言:AI的下一个浪潮将是物理AI。 即…...

语言中 函数用地址传参的好处
在C语言中,使用地址传参(传递指针)有以下几个好处: 1. **减少内存开销**: - 传递一个指针(通常是一个地址)比传递一个大的结构体或数组要高效得多,因为指针通常是一个固定大小&a…...

Python进阶二: NumPy基础:数组和矢量计算
二、NumPy基础:数组和矢量计算 本文源自微博客(www.microblog.store),且以获得授权 NumPy(Numerical Python的简称)是Python数值计算最重要的基础包。大多数提供科学计算的包都是用NumPy的数组作为构建基础。 NumPy的部分功能如下…...

2024北京智源大会开幕,智源推出大模型全家桶及全栈开源技术基座新版图,大模型先锋集结共探AGI之路
2024年6月14日,第六届“北京智源大会”在中关村展示中心开幕。 北京智源大会是智源研究院主办的“AI内行顶级盛会”,以“全球视野、思想碰撞、前沿引领”为特色,汇聚海内外研究者分享研究成果、探寻前沿知识、交流实践经验。2024北京智源大会…...

李光明从程序员到架构师的逆袭之路(三)
我,李光明,正在参加一个重要的技术会议。会场上,我们团队正在讨论着接口设计以及接口设计模式。我深知,一个好的接口设计应当遵循简洁、清晰、可扩展的原则。比如,在设计一个用户信息查询接口时,我们会定义…...