联邦学习周记|第四周
论文:Active Federated Learning
链接
将主动学习引入FL,每次随机抽几个Client拿来train,把置信值低的Client概率调大,就能少跑几次。
论文:Active learning based federated learning for waste and natural disaster image classification
链接
篇幅长且无价值 只是复述了一下AL
论文:Federated Active Learning (F-AL): an Efficient Annotation Strategy for Federated Learning
链接
跟上篇差不多 只是简单结合了下FL和AL 并称之为FAL
论文:Communication-Efficient Distributed Learning via Lazily Aggregated Quantized Gradients
链接
懒惰上传梯度,通过减少信息的比特以及对于过小的更新选择不上传更新以降低通信代价
论文:Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective(CVPR2021)
链接
指出了FL上传梯度和参数也会导致隐私泄漏,并提出通过添加噪声的方式对隐私进行保护。
具体的,论文指出在分类任务中,某一分类的一个数据在train完之后会对FC层也就是最后一个分类层的那一类的梯度产生较大影响,这很容易造成泄漏,所以就在最后一层添加一点噪声,并且文章通过数学方式证明了这不会对FL的性能产生什么影响。
论文:FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space(CVPR2021)
链接
指出了传统FL在没见过的数据分布上性能较差,并提出了一个域泛化模型。
具体的,文章指出传统的DG(域泛化)在FL隐私保护的背景下作用有限,提出将原始数据通过快速傅立叶变换转化到频率空间中,并通过连续插值的方法桥接多个数据分布空间,以加强模型在未见过的数据分布空间的性能。
更加具体的,每个客户端首先将原始数据通过FFT分割为相位谱和振幅谱,相位谱存储数据的大体框架,振幅谱存储着数据的具体细节。比如原始照片是一座山,相位谱就代表着光滑的山丘,振幅谱就代表着山上的一些坑坑洼洼和草木,二者加起来是一座完整的山,可以通过逆傅立叶变换(IFFT)将其从频率空间变换回原始图片。但如果手上只有振幅谱或相位谱的其一,就无法变换回去,这保证了隐私性。本论文只拿出振幅谱用于Clients的相互通信,每个Client拿自己的相位谱和其他Client的振幅谱合成(当然振幅谱还得插值),再通过IFFT变换回一张全新的照片,以此加强模型的泛化能力。
论文:Model-Contrastive Federated Learning(CVPR2021)
链接
提出了MOON算法,损失函数额外加上这一步模型和上一步模型的差值,加强一致性和稳定性。

论文:Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning(CVPR2021)
链接
论文聚焦于CT拍片这个问题,指出平常完整拍个片时间太长了,提出稍微扫描一下拍个大概然后再用AI补全(重建)。
每个Client上的损失函数是重建欠采样图片后的图与全采样图片之间的差值(欠采样的图就是少扫描一会,全采样的就是完整的扫完CT)。同时针对FL中可能存在的异质问题而导致每个Client重建,文章还提出了一个识别器用于分辨两个站点间重构出来的图像的特征区别,并将loss加上这个识别器的值,最终跑到识别器无法分辨出不同站点间的区别就算结束了,这解决了异质性的问题。
论文:Local Learning Matters: Rethinking Data Heterogeneity in Federated Learning(CVPR2022)
链接
提出了FedAlign,就是用类似知识蒸馏的方法对模型最后一层进行瘦化,使其性能提升,并且约束Lipschitz常数以达到输出的平滑和鲁棒性。
相关文章:
联邦学习周记|第四周
论文:Active Federated Learning 链接 将主动学习引入FL,每次随机抽几个Client拿来train,把置信值低的Client概率调大,就能少跑几次。 论文:Active learning based federated learning for waste and natural disast…...
机器学习课程复习——逻辑回归
1. 激活函数 Q:激活函数有哪些? SigmoidS型函数Tanh 双曲正切函数...
Rocky Linux 更换CN镜像地址
官方镜像列表,下拉查找 官方镜像列表:https://mirrors.rockylinux.org/mirrormanager/mirrorsCN 开头的站点。 一键更改镜像地址脚本 以下是更改从默认更改到阿里云地址 cat <<EOF>>/RackyLinux_Update_repo.sh #!/bin/bash # -*- codin…...
Linux rm命令由于要删的文件太多报-bash: /usr/bin/rm:参数列表过长,无法删除的解决办法
银河麒麟系统,在使用rm命令删除文件时报了如下错误,删不掉: 查了一下,原因就是要删除的文件太多了,例如我当前要删的文件共有这么多: 查到了解决办法,记录在此。需要使用xargs命令来解决参数列表…...
【包管理】Node.JS与Ptyhon安装
文章目录 Node.JSPtyhon Node.JS Node.js的安装通常包括以下几个步骤: 访问Node.js官网: 打开Node.js的官方网站(如:https://nodejs.org/zh-cn/download/)。 下载安装包: 根据你的操作系统选择对应的Node…...
SpringMVC系列四: Rest-优雅的url请求风格
Rest请求 💞Rest基本介绍💞Rest风格的url-完成增删改查需求说明代码实现HiddenHttpMethodFilter机制注意事项和细节 💞课后作业 上一讲, 我们学习的是SpringMVC系列三: Postman(接口测试工具) 现在打开springmvc项目 💞Rest基本介…...
Hexo 搭建个人博客(ubuntu20.04)
1 安装 Nodejs 和 npm 首先登录NodeSource官网: Nodesource Node.js DEB 按照提示安装最新的 Node.js 及其配套版本的 npm。 (1)以 sudo 用户身份运行下面的命令,下载并执行 NodeSource 安装脚本: sudo curl -fsSL…...
【论文阅读】-- Attribute-Aware RBFs:使用 RT Core 范围查询交互式可视化时间序列颗粒体积
Attribute-Aware RBFs: Interactive Visualization of Time Series Particle Volumes Using RT Core Range Queries 摘要1 引言2 相关工作2.1 粒子体渲染2.2 RT核心方法 3 渲染彩色时间序列粒子体积3.1 场重构3.1.1 密度场 Φ3.1.2 属性字段 θ3.1.3 优化场重建 3.2 树结构构建…...
A类IP介绍
1)A类ip给谁用: 给广域网用,公网ip使用A类地址,作为公网ip时,Ip地址是全球唯一的。 2)基本介绍 ip地址范围 - 理论范围 0.0.0.0 ~127.255.255.255:00000000 00000000 00000000 00000000 ~ 0111…...
HTML5基本语法
文章目录 HTML5基本语法一、基础标签1、分级标题2、段标签3、换行及水平线标签4、文本格式标签 二、图片标签1、格式2、属性介绍 三、音频标签1、格式2、属性介绍 四、视频标签1、格式2、属性介绍 五、链接标签1、格式2、显示特点3、属性介绍4、补充(空链接…...
正则表达式常用表示
视频教程:10分钟快速掌握正则表达式 正则表达式在线测试工具(亲测好用):测试工具 正则表达式常用表示 限定符 a*:a出现0次或多次a:a出现1次或多次a?:a出现0次或1次a{6}:a出现6次a…...
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程 一、编译后目录列表二、make distclean三、生成.config文件:make V=1 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- evb-rk3568_defconfig四、开始编译:CROSS_COMPILE=aarch64-…...
11.1 Go 标准库的组成
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
【UG\NX二次开发】UF 调用Grip例子(实现Grip调用目标dll)(UF_call_grip)
此例子是对:【UG\NX二次开发】UF 加载调用与卸载目标dll(UF_load_library、UF_unload_library)_ug二次开发dll自动加载-CSDN博客的补充。 ①创建txt文本,编写以下内容(功能:接收路径,调用该路径的dll)。改后缀为Grip文件(.grs)。…...
[算法刷题积累] 两数之和以及进阶引用
两数之和很经典,通常对于首先想到的就是暴力的求解,当然这没有问题,但是我们如果想要追求更优秀算法,就需要去实现更加简便的复杂度。 这里就要提到我们的哈希表法: 我们可以使用unordered_map去实现,也可以根据题目&a…...
pytest+parametrize+yaml实例
# 一、yaml格式 # # yaml是一种数据类型,可以和json之间灵活的切换,支持注释、换行、字符串等。可以用于配置文件或编写测试用例。 # # 数据结构:一般是键值对的方式出现。注意编写时值前面必须有空格,键:(…...
【HarmonyOS】鸿蒙应用模块化实现
【HarmonyOS】鸿蒙应用模块化实现 一、Module的概念 Module是HarmonyOS应用的基本功能单元,包含了源代码、资源文件、第三方库及应用清单文件,每一个Module都可以独立进行编译和运行。一个HarmonyOS应用通常会包含一个或多个Module,因此&am…...
深入Node.js:实现网易云音乐数据自动化抓取
随着互联网技术的飞速发展,数据已成为企业和个人获取信息、洞察市场趋势的重要资源。音频数据,尤其是来自流行音乐平台如网易云音乐的数据,因其丰富的用户交互和内容多样性,成为研究用户行为和市场动态的宝贵资料。本文将深入探讨…...
【Docker实战】jenkins卡在编译Dockerfile的问题
我们的项目是标准的CI/CD流程,也即是GitlabJenkinsHarborDocker的容器自动化部署。 经历了上上周的docker灾难,上周的服务器磁盘空间灾难,这次又发生了jenkins卡住的灾难。 当然,这些灾难有一定的连锁反应,是先发生的d…...
rust 多线程分发数据
use std::sync::{Arc, Mutex}; use std::collections::VecDeque; use std::thread::{self, sleep}; use rand::Rng; use std::time::Duration;fn main() {let list: Arc<Mutex<VecDeque<String>>> Arc::new(Mutex::new(VecDeque::new()));// 创建修改线程le…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
