当前位置: 首页 > news >正文

【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j+1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否是回文串。

1. 题目

2. 分析

这道题我写了一个小时才写出来,相比之前看答案写题是有进步的。估计这道题我这半个月都不会忘记了。一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。

具体看一个样例:s="babad",判断这个字符串是否是最长回文子串,相当于判断aba是否是回文子串和b与d是否相等。

01234
babad

相当于判断最后一个字符和要判断子串的第一个字符是否相等,外加判断内部子串是否是回文子串。

123
aba

那么抽象一下,就可以得出:判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j] 是否相等 + dp[i+1][j-1] 是否为1。

3. 代码

class Solution:def longestPalindrome(self, s: str) -> str:dp = [[0] * len(s) for i in range(len(s))]for cur_length in range(1, len(s)+1):for i in range(0, len(s)):j = i + cur_length - 1 # 终点下标if j >= len(s): # 越界处理continueif j == i:dp[i][j] = 1continueif cur_length == 2: # 长度为2的区间if s[j] == s[i]:dp[i][j] = 1continueif s[j] == s[i] and dp[i+1][j-1]: # 如果起点和终点相同dp[i][j] = 1# print(dp)max_len = 0res = ""for i in range(len(s)):for j in range(len(s)):if dp[i][j] == 1:if j-i+1 > max_len:max_len = max(max_len, j-i+1)res = s[i:j+1]return res

相关文章:

【LeetCode 5.】 最长回文子串

一道题能否使用动态规划就在于判断最优结构是否是通过最优子结构推导得到?如果显然具备这个特性,那么就应该朝动态规划思考。如果令dp[i][j]表示串s[i:j1]是否是回文子串,那么判断dp[i][j] 是否是回文子串,相当于判断s[i] 与 s[j]…...

联邦学习周记|第四周

论文:Active Federated Learning 链接 将主动学习引入FL,每次随机抽几个Client拿来train,把置信值低的Client概率调大,就能少跑几次。 论文:Active learning based federated learning for waste and natural disast…...

机器学习课程复习——逻辑回归

1. 激活函数 Q:激活函数有哪些? SigmoidS型函数Tanh 双曲正切函数...

Rocky Linux 更换CN镜像地址

官方镜像列表&#xff0c;下拉查找 官方镜像列表&#xff1a;https://mirrors.rockylinux.org/mirrormanager/mirrorsCN 开头的站点。 一键更改镜像地址脚本 以下是更改从默认更改到阿里云地址 cat <<EOF>>/RackyLinux_Update_repo.sh #!/bin/bash # -*- codin…...

Linux rm命令由于要删的文件太多报-bash: /usr/bin/rm:参数列表过长,无法删除的解决办法

银河麒麟系统&#xff0c;在使用rm命令删除文件时报了如下错误&#xff0c;删不掉&#xff1a; 查了一下&#xff0c;原因就是要删除的文件太多了&#xff0c;例如我当前要删的文件共有这么多&#xff1a; 查到了解决办法&#xff0c;记录在此。需要使用xargs命令来解决参数列表…...

【包管理】Node.JS与Ptyhon安装

文章目录 Node.JSPtyhon Node.JS Node.js的安装通常包括以下几个步骤&#xff1a; 访问Node.js官网&#xff1a; 打开Node.js的官方网站&#xff08;如&#xff1a;https://nodejs.org/zh-cn/download/&#xff09;。 下载安装包&#xff1a; 根据你的操作系统选择对应的Node…...

SpringMVC系列四: Rest-优雅的url请求风格

Rest请求 &#x1f49e;Rest基本介绍&#x1f49e;Rest风格的url-完成增删改查需求说明代码实现HiddenHttpMethodFilter机制注意事项和细节 &#x1f49e;课后作业 上一讲, 我们学习的是SpringMVC系列三: Postman(接口测试工具) 现在打开springmvc项目 &#x1f49e;Rest基本介…...

Hexo 搭建个人博客(ubuntu20.04)

1 安装 Nodejs 和 npm 首先登录NodeSource官网&#xff1a; Nodesource Node.js DEB 按照提示安装最新的 Node.js 及其配套版本的 npm。 &#xff08;1&#xff09;以 sudo 用户身份运行下面的命令&#xff0c;下载并执行 NodeSource 安装脚本&#xff1a; sudo curl -fsSL…...

【论文阅读】-- Attribute-Aware RBFs:使用 RT Core 范围查询交互式可视化时间序列颗粒体积

Attribute-Aware RBFs: Interactive Visualization of Time Series Particle Volumes Using RT Core Range Queries 摘要1 引言2 相关工作2.1 粒子体渲染2.2 RT核心方法 3 渲染彩色时间序列粒子体积3.1 场重构3.1.1 密度场 Φ3.1.2 属性字段 θ3.1.3 优化场重建 3.2 树结构构建…...

A类IP介绍

1&#xff09;A类ip给谁用&#xff1a; 给广域网用&#xff0c;公网ip使用A类地址&#xff0c;作为公网ip时&#xff0c;Ip地址是全球唯一的。 2&#xff09;基本介绍 ip地址范围 - 理论范围 0.0.0.0 ~127.255.255.255&#xff1a;00000000 00000000 00000000 00000000 ~ 0111…...

HTML5基本语法

文章目录 HTML5基本语法一、基础标签1、分级标题2、段标签3、换行及水平线标签4、文本格式标签 二、图片标签1、格式2、属性介绍 三、音频标签1、格式2、属性介绍 四、视频标签1、格式2、属性介绍 五、链接标签1、格式2、显示特点3、属性介绍4、补充&#xff08;空链接&#xf…...

正则表达式常用表示

视频教程&#xff1a;10分钟快速掌握正则表达式 正则表达式在线测试工具&#xff08;亲测好用&#xff09;&#xff1a;测试工具 正则表达式常用表示 限定符 a*&#xff1a;a出现0次或多次a&#xff1a;a出现1次或多次a?&#xff1a;a出现0次或1次a{6}&#xff1a;a出现6次a…...

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程 一、编译后目录列表二、make distclean三、生成.config文件:make V=1 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- evb-rk3568_defconfig四、开始编译:CROSS_COMPILE=aarch64-…...

11.1 Go 标准库的组成

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

【UG\NX二次开发】UF 调用Grip例子(实现Grip调用目标dll)(UF_call_grip)

此例子是对&#xff1a;【UG\NX二次开发】UF 加载调用与卸载目标dll(UF_load_library、UF_unload_library)_ug二次开发dll自动加载-CSDN博客的补充。 ①创建txt文本&#xff0c;编写以下内容(功能&#xff1a;接收路径&#xff0c;调用该路径的dll)。改后缀为Grip文件(.grs)。…...

[算法刷题积累] 两数之和以及进阶引用

两数之和很经典&#xff0c;通常对于首先想到的就是暴力的求解&#xff0c;当然这没有问题&#xff0c;但是我们如果想要追求更优秀算法&#xff0c;就需要去实现更加简便的复杂度。 这里就要提到我们的哈希表法: 我们可以使用unordered_map去实现&#xff0c;也可以根据题目&a…...

pytest+parametrize+yaml实例

# 一、yaml格式 # # yaml是一种数据类型&#xff0c;可以和json之间灵活的切换&#xff0c;支持注释、换行、字符串等。可以用于配置文件或编写测试用例。 # # 数据结构&#xff1a;一般是键值对的方式出现。注意编写时值前面必须有空格&#xff0c;键&#xff1a;&#xff08;…...

【HarmonyOS】鸿蒙应用模块化实现

【HarmonyOS】鸿蒙应用模块化实现 一、Module的概念 Module是HarmonyOS应用的基本功能单元&#xff0c;包含了源代码、资源文件、第三方库及应用清单文件&#xff0c;每一个Module都可以独立进行编译和运行。一个HarmonyOS应用通常会包含一个或多个Module&#xff0c;因此&am…...

深入Node.js:实现网易云音乐数据自动化抓取

随着互联网技术的飞速发展&#xff0c;数据已成为企业和个人获取信息、洞察市场趋势的重要资源。音频数据&#xff0c;尤其是来自流行音乐平台如网易云音乐的数据&#xff0c;因其丰富的用户交互和内容多样性&#xff0c;成为研究用户行为和市场动态的宝贵资料。本文将深入探讨…...

【Docker实战】jenkins卡在编译Dockerfile的问题

我们的项目是标准的CI/CD流程&#xff0c;也即是GitlabJenkinsHarborDocker的容器自动化部署。 经历了上上周的docker灾难&#xff0c;上周的服务器磁盘空间灾难&#xff0c;这次又发生了jenkins卡住的灾难。 当然&#xff0c;这些灾难有一定的连锁反应&#xff0c;是先发生的d…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...