基于支持向量机的垃圾邮件分类,使用SVM+flask+vue
sms-classify
基于支持向量机的垃圾邮件分类,使用SVM+flask+vue
数据集和源码地址
数据集 SMS Spam Collection Data Set 来源于 UCI。样例被分为非垃圾邮件(86.6%)和垃圾邮件(13.4%),数据格式如下:
ham Go until jurong point, crazy.. Available only in bugis n great world la e buffet...
ham Ok lar... Joking wif u oni...
spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005.
ham U dun say so early hor... U c already then say...
代码结构
- client: 前端实现
- server: 后端实现- models: svm model- sms_classify.py: 垃圾邮件分类实现- SMSSpamCollection: 数据集- app.py 系统实现
- svm.py: 支持向量机算法实现
- svm_test.py:算法test
性能评估
综合比较了垃圾邮件分类任务在支持向量机、朴素贝叶斯、最近邻、决策树算法下的性能,
评估指标包括accuracy、precision、recall、f1-score等。
从accuracy来看,支持向量机的accuracy为98%,是所有测试算法中最高的,可以看出
垃圾邮件分类任务适合使用支持向量机来做。
各算法表现具体如下表:
- 支持向量机:
precision recall f1-score support0 0.98 1.00 0.99 4821 1.00 0.86 0.92 76accuracy 0.98 558macro avg 0.99 0.93 0.96 558
weighted avg 0.98 0.98 0.98 558
支持向量机的accuracy有 98.029%。
- 贝叶斯算法:
precision recall f1-score support0 0.94 1.00 0.97 4821 1.00 0.62 0.76 76accuracy 0.95 558macro avg 0.97 0.81 0.87 558
weighted avg 0.95 0.95 0.94 558
贝叶斯算法的accuracy只有 94.803%。
- 最近邻算法:
precision recall f1-score support0 0.97 0.99 0.98 4821 0.93 0.83 0.88 76accuracy 0.97 558macro avg 0.95 0.91 0.93 558
weighted avg 0.97 0.97 0.97 558
最近邻算法的accuracy为 96.774%。
- 决策树算法:
precision recall f1-score support0 0.97 0.98 0.98 4821 0.88 0.79 0.83 76accuracy 0.96 558macro avg 0.92 0.89 0.90 558
weighted avg 0.96 0.96 0.96 558
决策树算法的accuracy为 95.699%。
如何运行
首先安装必要的包
# 创建虚拟环境
python -m venv env
# 激活虚拟环境
source env/bin/activate
# 安装依赖包
pip install -r requirements.txt
运行SVM算法实现
# 确保安装 matplotlib 和 numpy
python3 svm_test.py
运行垃圾邮件分类
~ cd server/models/
~ python3 sms_classify.py
运行垃圾邮件分类系统
server端
# 确保安装必要的包
# 启动flask
python app.py
client端
# 确保安装node & npm
npm install
npm run server
相关文章:
基于支持向量机的垃圾邮件分类,使用SVM+flask+vue
sms-classify 基于支持向量机的垃圾邮件分类,使用SVMflaskvue 数据集和源码地址 数据集 SMS Spam Collection Data Set 来源于 UCI。样例被分为非垃圾邮件(86.6%)和垃圾邮件(13.4%),数据格式如下ÿ…...
目标检测数据集 - 零售食品LOGO检测数据集下载「包含VOC、COCO、YOLO三种格式」
数据集介绍:零售食品 LOGO 检测数据集,真实零售食品 LOGO 高质量商品图片数据,数据集含常见零售食品 LOGO 图片,包括饮料类、酒类、调味品类、膨化饼干类、巧克力类、常见零食类等等。数据集类别丰富,标注标签包含 150…...
47.PyCharm P版突然无法启动
目录 1.启动cmd.exe,进到pycharm\bin目录,启动.\pycharm.bat,如果正常,就像下面这个样子,如果不正常,则会报错, 2.用记事本打开pycharm.bat文件,加上以下代码后 今晨,无…...
「动态规划」如何求粉刷房子的最少花费?
LCR 091. 粉刷房子https://leetcode.cn/problems/JEj789/description/ 假如有一排房子,共n个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。当然,因为市…...
代码随想录算法训练营DAY41|背包问题 二维 、背包问题 一维、416. 分割等和子集
背包问题 二维 题目链接:背包问题 二维 def bag_weight_problem(n,space,weight,value):dp [[0 for i in range(space1)]for j in range(n)]for i in range(weight[0], space1):dp[0][i]value[0]for j in range(1, n):for k in range(space1):if weight[j]>k:…...
gitlab2024最新版安装
系统:redhat9.0 gitlab版本:gitlab-ce-16.10.7-ce.0.el9.x86_64.rpm 安装组件&包依赖:https://packages.gitlab.com/gitlab/gitlab-ce/packages/ol/9/gitlab-ce-16.10.7-ce.0.el9.x86_64.rpm 参考: 前提: 下载gitl…...
2022C语言二级真题
目录 数组逆序重放 题目描述 样例 最长最短单词 题目描述 样例 统计误差范围内的数 题目描述 样例 有趣的跳跃 题目描述 样例 数字放大 题目描述 样例 内部元素之和 题目描述 样例 满足条件的数的累加 题目描述 样例 偶数降序输出 题目描述 样例 字符统…...
智慧购房:链家网上海在售楼盘数据解析与模型构建
1.项目背景 随着中国经济的快速发展,上海作为国际化大都市,其房地产市场一直备受关注,购房者在面对庞大且复杂的楼盘信息时,往往感到困惑和不知所措,为了帮助购房者更好地了解市场行情,做出明智的购房决策,本项目选择了链家网上海市在售楼盘数据,进行了全面的数据分析…...
二进制数转字符串
题目链接 二进制数转字符串 题目描述 注意点 32位包括输出中的 “0.” 这两位题目保证输入用例的小数位数最多只有 6 位 解答思路 将小数转为二进制的思路是将小数乘2,如果整数部分为1,则说明第i位是1(第i位则乘了2的几次方)…...
WINDOWS系统jdk和maven明明安装了cmd里却无法使用相关命令
今天当了回s b 新电脑jdk和maven装是装了,系统变量也配置了,但没配置完,javahome和mavenhome没配置,结果cmdjdk和maven版本都查不到,我真s b啊 配置 JAVA_HOME 环境变量: 右键点击“此电脑”或者“我的电…...
基于EasyAnimate模型的视频生成最佳实践
EasyAnimate是阿里云PAI平台自主研发的DiT的视频生成框架,它提供了完整的高清长视频生成解决方案,包括视频数据预处理、VAE训练、DiT训练、模型推理和模型评测等。本文为您介绍如何在PAI平台集成EasyAnimate并一键完成模型推理、微调及部署的实践流程。 …...
linux最大线程数限制及打开最大文件数
1.root用户下执行 ulimit -a 然后查看 max user processes 这个值通常是系统最大线程数的一半 max user processes:当前用户同时打开的进程(包括线程)的最大个数为 2.普通用户下 ulimit -a 出现的max user processes的值 默认是 /etc/security/limits.d/20-nproc.co…...
MyBatis系列七: 一级缓存,二级缓存,EnCache缓存
缓存-提高检索效率的利器 官方文档 一级缓存基本介绍快速入门Debug一级缓存执行流程一级缓存失效分析 二级缓存基本介绍快速入门Debug二级缓存执行流程注意事项和使用细节 mybatis的一级缓存和二级缓存执行顺序小实验细节说明 EnCache缓存基本介绍配置和使用EhCache细节说明 My…...
C++迈向精通:函数指针对象与函数对象
C:指针对象 C语言中的函数指针 在C语言中,我们见过如下的函数指针: int add(int a, int b) {return a b; }int main() {int a, b;int (*p)(int, int) add;scanf("%d%d", &a, &b);p(a, b);return 0; } 为了适应C中面向…...
类和对象知识点
面向对象概念回顾 万物皆对象 用程序来抽象(形容)对象 用面向对象的思想来编程 什么是类 基本概念 具有相同特征,具有相同行为,一类事物的抽象。 类是对象的模板,可以通过类创建出对象,类的关键词—…...
【FAS】《Survey on face anti-spoofing in face recognition》
文章目录 原文基于手工设计特征表达的人脸活体检测方法基于深度学习的人脸活体检测方法基于融合策略的人脸活体检测方法人脸检测活体数据库点评 原文 邓雄,王洪春,赵立军等.人脸识别活体检测研究方法综述[J].计算机应用研究,2020,37(09):2579-2585.DOI:10.19734/j.issn.1001-3…...
【Unity】RPG2D龙城纷争(一)搭建项目、导入框架、前期开发准备
更新日期:2024年6月12日。 项目源码:后续章节发布 免责声明:【RPG2D龙城纷争】使用的图片、音频等所有素材均有可能来自互联网,本专栏所有文章仅做学习和教程目的,不会将任何素材用于任何商业用途。 索引 【系列简介】…...
多目标跟踪中检测器和跟踪器如何协同工作的
多目标跟踪中检测器和跟踪器如何协同工作的 flyfish 主要是两者 接口间的交互 假设 原始图像尺寸:1920(宽)x 1080(高) 模型输入尺寸:640(宽)x 640(高) 检…...
kali系统几个开机启动项的区别
1、Live system (amd64) 简单的模式 ,启动系统,直接进入 Kali,在系统中的所有的操作和设置都会在下次重启时失效。 Kali 中保存/编辑的所有东西都会重启丢失。 2、Live system (amd64 fail-safe mode) 这种模式与 Live (amd64) 类似…...
【自撰写】【国际象棋入门】第5课 常见开局战术组合(一)
第5课 常见开局战术组合(一) 本次课中,我们简要介绍几种常见的开局战术组合。开局当中,理想的情况是,己方的两只(或以上)轻子相互配合,或者与己方的兵配合,在完成布局的…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
