当前位置: 首页 > news >正文

求“二维随机变量的期望E(X)与方差D(X)”例题(一)

离散型

 

设随机变量(X,Y)的联合分布律为

X\Y01
00.10.2
10.30.4

(1)求E(X)

先求x的边缘分布律,表格里x=0的概率为0.1+0.2,于是我们可得

X01
P0.30.7

直接求E(X)即可,得到结果0 \times 0.3 + 1 \times 0.7 = 0.7

(2)求E(XY)

直接x与y相乘就行。

E(XY)=(0 \times 0 \times 0.1)+(0 \times 1 \times 0.2 )+(1 \times 0 \times 0.3)+(1 \times 1 \times 0.4)=0.4

记得别乘多了,别X=0,Y=0的算了又算遍Y=0,X=0。 

(3)求E(X+Y)

和上面一样,x与y相加就行。

E(X+Y)=(0 + 0 \times 0.1)+(0 + 1 \times 0.2 )+(1 + 0 \times 0.3)+(1 + 1 \times 0.4)=1.3

连续型

已知随机变量(X,Y)的概率密度f(x,y)=\left\{\begin{matrix} 2x+2y ,\ 0\leq y\leq x \leq 1 & & \\ 0 \ ,other & & \end{matrix}\right.

(1)求E(X)

和求一维连续型随机变量的步骤差不多。把E(X)的x当作g(x),然后求个这个二重积分\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x)\cdot f(x)dxdy即可。

由于函数在除了[0,1]的区间上都为0,对其积分也为0。同时x和y的上下限都已经给出。我们可以得到\int_{0}^{1}dx\int_{0}^{x}x\cdot (2x+2y)dy

关于二重积分的相关知识在高数下。这里作简述:这里的二重积分是化成了x型。也就是把dx往前提;然后先写x的取值范围再写y的取值范围。由于x是自变量所以上下限应与y无关。所以这里是[0,1]而不是[y,1]。而y是因变量,所以上下限为[0,x]。所要求的式子与dy放在一起。然后就变成了求解定积分--先求对y的积分,再对得出来的结果求x的积分。

运算过程太多,这里写关键的。即

\\ \int_{0}^{1}dx\int_{0}^{x}x\cdot (2x+2y)dy= \int_{0}^{1}dx \ (2x^2y+xy^2)\left.\begin{matrix} \\ \ \end{matrix}\right|^x_{0}\\ \int_{0}^{1}(2x^3+x^3-(0+0))dx \ = \int_{0}^{1}(3x^3)dx=\frac{3}{4} \times 1 - \frac{3}{4} \times 0 = \frac{3}{4}

(2)求E(X^2)

X^2步骤和上面一样,只不是是g(x)=X^2,所以式子变成了\int_{0}^{1}dx\int_{0}^{x}x^2\cdot (2x+2y)dy

上下限没变,计算方法没变。这里就直接放结果为\frac{3}{5}

(3)求E(XY)

还是和上面一样的,式子变成了\int_{0}^{1}dx\int_{0}^{x}xy\cdot (2x+2y)dy,结果为\frac{1}{3}

相关文章:

求“二维随机变量的期望E(X)与方差D(X)”例题(一)

离散型 设随机变量(X,Y)的联合分布律为 X\Y0100.10.210.30.4 (1)求E(X) 先求x的边缘分布律,表格里x0的概率为0.10.2,于是我们可得 X01P0.30.7直接求E(X)即可,得到结果 (2)求E(XY) 直接x与y相乘就行。 记得别乘多了,别的算了又…...

MySQL 搞定行转列,列转行

行转列方法总结1、使用case…when…then2、使用SUM(IF()) 生成列3、使用SUM(IF()) 生成列 WITH ROLLUP 生成汇总行4、使用SUM(IF()) 生成列 UNION 生成汇总行,并利用 IFNULL将汇总行标题显示为 Total5、使用SUM(IF()) 生成列,直接生成汇总结果,不再利用…...

正点原子裸机开发之C语言点灯程序

一. 简介 本文针对 IMX6ULL 的裸机开发的(即不带Linux操作系统的开发)。 主要分两部分的工作: 1. 配置 C语言运行环境 2. C 语言编写及运行 二. 配置C语言运行环境 配置 C 语言运行环境的工作分 三部分。如下: 1. 设置…...

cv::阈值分割OTUS原理+代码

opencv库的阈值分割分为全局分割和局部分割全局分割:普通分割ret1,th1 cv2.threshold(img,127, 255, cv2.THRESH_BINARY) #127为阈值 #cv2.THRESH_BINARY |cv2.THRESH_BINARY_INV | cv2.THRESH_TRUNC|cv2.THRESH_TOZERO|cv2.THRESH_TOZERO_INV局部分割:…...

Postgresql-12.5 visual studio-2022 windows 添加pg工程并调试

pg内核学习,记录一下 文章目录安装包编译安装VS添加Postgresql工程调试源码安装包 (1)perl下载 https://www.perl.org/get.html (2)diff下载 http://gnuwin32.sourceforge.net/packages/diffutils.htm (…...

长沙学院2023 第一次蓝桥训练题解

每道题都在洛谷上,每个题都有很详细的题解,可以先自行做,不会再看题解。 题目解析思路都写在代码中,中文题面就不单独解释题意了。 P2440 木材加工(二分答案) 链接:P2440 木材加工 解析 代码…...

云端Docker搭建ABY库以及本地CLion使用

文章目录ABY的搭建以及使用前言ABY库的下载、安装及测试CLion配置后续杂项项目改名使用其他的库最后ABY的搭建以及使用 前言 仅做记录,仅供参考,不同人有不同的使用方式命令手敲,可能有错,自己辨识勿问,我懂的也不多…...

ES6-箭头函数、解构赋值、对象简写

箭头函数特点 1、 (只有1个形参) 可以省略() 2、 {} 可以省略 只有一句代码 或 只有返回值的时候,省略return 3、arguments 不可用,arguments在没有形参的时候可以拿到调用函数拿在的实参 获取伪数组通过Array.from转为真数组。 4、 箭头函数没有this, …...

【CSS】CSS 背景设置 ② ( 背景位置 | 背景位置-方位值设置 )

文章目录一、背景位置1、语法说明2、注意事项二、背景位置-方位值设置1、效果展示2、完整代码示例一、背景位置 1、语法说明 如果 盒子的大小 大于 背景图片的大小 , 默认的 图片 位置是 左上角 ; 设置背景位置的 CSS 语法如下 : background-position : length length backgro…...

HTML 扫盲

✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 目录前言HTML 结构快速生成代码框架HTML 常见标签注释标签标题标签: h1-h6段落标签:p换行标签:br格式化标签…...

项目中用到的责任链模式

目录 1.什么是责任链?它的原理是什么? 2.应用场景 ​3.项目中的应用 传送门:策略模式,工作中你用上了吗? 1.什么是责任链?它的原理是什么? 将请求的发送和接收解耦,让多个接收对象…...

C++复习笔记--STL的string容器和vector容器

1--string容器string 本质上是一个类,其不同于指针 char*,string 类的内部封装了 char*,用于管理字符串,是一个 char* 型的容器;1-1--string构造函数string 的构造函数原型:string(); // 创建一个空的字符串…...

第一章 软件项目管理概述

项目(Project)是为了创造一个唯一的产品或提供一个唯一的服务而进行的临时性的努力。项目的特征PMBOK(A guide to the Project management Body Of Knowledge:项目管理知识体系指南)五大过程组和十大知识领域从时间角度出发,项目管理分为五大过程组:启动…...

【Linux系统编程】06:共享内存

共享内存 OVERVIEW共享内存一、文件上锁flock二、共享内存1.关联共享内存ftok2.获取共享内存shmget3.绑定共享内存shmat4.绑定分离shmdt5.控制共享内存shmctl三、亲缘进程间通信1.共享内存写入与读取2.共享内存解绑与删除3.共享内存综合四、非亲缘进程间通信1.通过sleep同步2.通…...

【专项】112. 路径总和

112. 路径总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。 叶子节点 …...

【数据结构】堆排序

堆是一种叫做完全二叉树的数据结构,可以分为大根堆,小根堆,而堆排序就是基于这种结构而产生的一种程序算法。大堆:每个节点的值都大于或者等于他的左右孩子节点的值小堆:每个结点的值都小于或等于其左孩子和右孩子结点…...

论文阅读笔记《GAMnet: Robust Feature Matching via Graph Adversarial-Matching Network》

核心思想 本文提出一种基于图对抗神经网络的图匹配算法(GAMnet),使用图神经网络作为生成器分别生成源图和目标图的节点的特征,并用一个多层感知机作为辨别器来区分两个特征是否来自同一个图,通过对抗训练的办法提高生成器特征提取…...

数据安全—数据完整性校验

1、数据安全保障三要素即 保密性 完整性、可用性机密性:要求数据不被他人轻易获取,需要进行数据加密。完整性:要求数据不被他人随意修改,需要进行签名技术可用性:要求服务不被他人恶意攻击,需要进行数据校验…...

Java 最小路径和

最小路径和中等给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。示例 1:输入:grid [[1,3,1],[1,5,1],[4,2,1]]输出&…...

Flask+VUE前后端分离的登入注册系统实现

首先Pycharm创建一个Flask项目: Flask连接数据库需要下载的包: pip install -U flask-cors pip install flask-sqlalchemy Flask 连接和操作Mysql数据库 - 王滚滚啊 - 博客园 (cnblogs.com) sqlAlchemy基本使用 - 简书 (jianshu.com) FlaskVue前后端分…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...