当前位置: 首页 > news >正文

代码随想录算法训练营第四十四天 | 322. 零钱兑换、279.完全平方数、139.单词拆分、多重背包理论基础、背包问题总结

322. 零钱兑换

题目链接:https://leetcode.cn/problems/coin-change/
文档讲解:https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html
视频讲解:https://www.bilibili.com/video/BV14K411R7yv/

思路

  • 确定dp数组以及下标的含义:凑成金额j最少需要dp[j]个硬币。
  • 确定递推公式:dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);。需要注意的是只有dp[j - coins[i]]不为初始值时才进行计算,不然没有意义。
  • dp数组如何初始化:因为求的是最小值,所以初始化为Integer.MAX_VALUEdp[0] = 0;,凑成0元需要0个硬币。
  • 确定遍历顺序:因为是求最小值且硬币个数无限,所以正序遍历背包和物品,谁先遍历都可以。
  • 打印dp数组,用于debug

代码

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount + 1];for (int i = 0; i <= amount; i++) dp[i] = Integer.MAX_VALUE;dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {//只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要if (dp[j - coins[i]] != Integer.MAX_VALUE) dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];}
}

分析:时间复杂度:O(mn),空间复杂度:O(m)。m是amount的值,n是coins的长度。

279.完全平方数

题目链接:https://leetcode.cn/problems/perfect-squares/
文档讲解:https://programmercarl.com/0279.%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0.html
视频讲解:https://www.bilibili.com/video/BV12P411T7Br/

思路

  • 确定dp数组以及下标的含义:和为j的完全平方数最小个数为dp[j]
  • 确定递推公式:dp[j] = Math.min(dp[j], dp[j - nums[i]] + 1);
  • dp数组如何初始化:因为是求最小值,所以初始化为最大值,和为0的完全平方数个数为0。
for (int i = 1; i <= n; i++) dp[i] = Integer.MAX_VALUE;
dp[0] = 0;
  • 确定遍历顺序:因为是求最小值且硬币个数无限,所以正序遍历背包和物品,谁先遍历都可以。
  • 打印dp数组,用于debug

代码

我的代码

class Solution {public int numSquares(int n) {int[] nums = new int[n];int numslen = 0;// 先得到小于n的完全平方数都有哪些,存入数组,作为物品。for (int i = 1; i * i <= n; i++) {nums[numslen++] = i * i;}int[] dp = new int[n + 1];for (int i = 1; i <= n; i++) dp[i] = Integer.MAX_VALUE;dp[0] = 0;for (int i = 0; i < numslen; i++) {for (int j = nums[i]; j <= n; j++) {dp[j] = Math.min(dp[j], dp[j - nums[i]] + 1);}}return dp[n];}
}

卡哥代码

class Solution {public int numSquares(int n) {int[] dp = new int[n + 1];for (int j = 0; j <= n; j++) {dp[j] = Integer.MAX_VALU;}dp[0] = 0;for (int i = 1; i * i <= n; i++) {for (int j = i * i; j <= n; j++) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
}

分析:时间复杂度:O(n * √n),空间复杂度:O(n)。

139.单词拆分

题目链接:https://leetcode.cn/problems/word-break/
文档讲解:https://programmercarl.com/0139.%E5%8D%95%E8%AF%8D%E6%8B%86%E5%88%86.html
视频讲解:https://www.bilibili.com/video/BV1pd4y147Rh/

思路

  • 确定dp数组以及下标的含义:字符串长度为j的话,dp[j]为true,表示可以拆分为一个或多个在字典中出现的单词。
  • 确定递推公式:如果确定dp[i] 是true,且 [i, j] 这个区间的子串出现在字典里,那么dp[j]一定是true。所以递推公式是 if (hash.contains(s.substring(i, j)) && dp[i]) dp[j] = true;
  • dp数组如何初始化:Arrays.fill(dp, false);dp[0] = true;
  • 确定遍历顺序:本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。
    applepen是物品,那么我们要求物品的组合一定是 apple + pen + apple 才能组成 applepenapple
    apple + apple`` + pen或者pen+apple+apple` 是不可以的,那么我们就是强调物品之间顺序。
    所以说,本题一定是先遍历背包,再遍历物品。
  • 打印dp数组,用于debug

代码

class Solution {public boolean wordBreak(String s, List<String> wordDict) {HashSet<String> hash = new HashSet<>(wordDict); // 转换成hash表,能快速判断是否单词存在在字典里boolean[] dp = new boolean[s.length() + 1];Arrays.fill(dp, false);dp[0] = true;for (int j = 1; j <= s.length(); j++) {  // 遍历背包for (int i = 0; i < j && !dp[j]; i++) { // 遍历物品if (hash.contains(s.substring(i, j)) && dp[i]) dp[j] = true;}}return dp[s.length()];}
}

分析:时间复杂度:O(n3),空间复杂度:O(n)。因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)。

多重背包理论基础

题目链接:https://kamacoder.com/problempage.php?pid=1066
文档讲解:https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F…

思路

将多重背包中多个物品的数量展开,然后看做是01背包来解决。

代码

import java.util.Scanner;public class Main{public static void main(String [] args) {Scanner sc = new Scanner(System.in);int bagWeight = sc.nextInt();int n = sc.nextInt();int[] weight = new int[n];int[] value = new int[n];int[] nums = new int[n];for (int i = 0; i < n; i++) weight[i] = sc.nextInt();for (int i = 0; i < n; i++) value[i] = sc.nextInt();for (int i = 0; i < n; i++) nums[i] = sc.nextInt();int[] dp = new int[bagWeight + 1];//先遍历物品再遍历背包,作为01背包处理for (int i = 0; i < n; i++) {for (int j = bagWeight; j >= weight[i]; j--) {//遍历每种物品的个数for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);}}}System.out.println(dp[bagWeight]);}
}

分析:时间复杂度:O(mnk),空间复杂度:O(n)。m:物品种类个数,n背包容量,k单类物品数量。

背包问题总结

文档讲解:https://programmercarl.com/%E8%83%8C%E5%8C%85%E6%80%BB%E7%BB%93%E7%AF%87.html

相关文章:

代码随想录算法训练营第四十四天 | 322. 零钱兑换、279.完全平方数、139.单词拆分、多重背包理论基础、背包问题总结

322. 零钱兑换 题目链接&#xff1a;https://leetcode.cn/problems/coin-change/ 文档讲解&#xff1a;https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html 视频讲解&#xff1a;https://www.bilibili.com/video/BV14K411R7yv/ 思路 确定dp数组以及下…...

开源AGV调度系统OpenTCS中的路由器(router)详解

OpenTCS中的任务分派器router详解 1. 引言2. 路由器(router)2.1 代价计算函数&#xff08;Cost functions&#xff09;2.2 2.1 Routing groups2.1 默认的停车位置选择2.2 可选停车位置属性2.3 默认的充电位置选择2.4 即时运输订单分配 3. 默认任务分派器的配置项4. 参考资料与源…...

关于下载 IDEA、WebStorm 的一些心得感想

背景 实习第一天的时候&#xff0c;睿哥便吩咐我下载一些软件&#xff0c;这些软件以后在写项目的时候会用到&#xff0c;他叫我先装IDEA,WebStorm&#xff0c;微信开发者工具&#xff0c;git&#xff0c;还有Navicat。 这些软件能够被我们正常使用&#xff0c;无非就通过三步…...

C#使用Scoket实现服务器和客户端互发信息

20240616 By wdhuag 目录 前言&#xff1a; 参考&#xff1a; 一、服务器端&#xff1a; 1、服务器端口绑定&#xff1a; 2、服务器关闭&#xff1a; 二、客户端&#xff1a; 1、客户端连接&#xff1a; 2、客户端断开&#xff1a; 三、通讯&#xff1a; 1、接收信…...

【经验分享】SpringCloud + MyBatis Plus 配置 MySQL,TDengine 双数据源

概述 因为项目中采集工厂中的设备码点的数据量比较大,需要集成TDengine时序数据库,所以需要设置双数据源 操作步骤 导入依赖 <!-- 多数据源支持 --><dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-s…...

Pycharm 忽略文件

安装 .ignore插件 规则示例 罗列一些常遇到.getignore忽略规则的使用示例&#xff1a; 1. 在已忽略文件夹中不忽略指定文件夹&#xff1a; /libs/* !/libs/extend/ 2. 在已忽略文件夹中不忽略指定文件 /libs/* !/libs/extend/fastjson.jar 3.只忽略libs目录&#xf…...

爬虫学习。。。。

爬虫的概念&#xff1a; 爬虫是一种自动化信息采集程序或脚本&#xff0c;用于从互联网上抓取信息。 它通过模拟浏览器请求站点的行为&#xff0c;获取资源后分析并提取有用数据&#xff0c;这些数据可以是HTML代码、JSON数据或二进制数据&#xff08;如图片、视频&#xff09…...

美国铁路客运巨头Amtrak泄漏旅客数据,数据销毁 硬盘销毁 文件销毁

旅客的Guest Rewards常旅客积分账户的个人信息被大量窃取。 美国国家客运铁路公司&#xff08;Amtrak&#xff09;近日披露了一起数据泄露事件&#xff0c;旅客的Guest Rewards常旅客积分账户的个人信息被大量窃取。 根据Amtrak向马萨诸塞州提交的泄露通知&#xff0c;5月15日…...

LabVIEW与Matlab联合编程的途径及比较

​ LabVIEW和Matlab联合编程可以通过多种途径实现&#xff0c;包括调用Matlab脚本节点、使用LabVIEW MathScript RT模块、利用ActiveX和COM接口&#xff0c;以及通过文件读写实现数据交换。每种方法都有其独特的优势和适用场景。本文将详细比较这些方法&#xff0c;帮助开发者…...

秋招突击——6/16——复习{(单调队列优化DP)——最大子序和,背包模型——宠物小精灵收服问题}——新作{二叉树的后序遍历}

文章目录 引言复习&#xff08;单调队列优化DP&#xff09;——最大子序和单调队列的基本实现思路——求可移动窗口中的最值总结 背包模型——宠物小精灵收服问题思路分析参考思路分析 新作二叉树的后续遍历加指针调换 总结 引言 复习 &#xff08;单调队列优化DP&#xff09…...

SAR动目标检测系列:【4】动目标二维速度估计

在三大类杂波抑制技术(ATI、DPCA和STAP)中&#xff0c;STAP技术利用杂波与动目标在二维空时谱的差异&#xff0c;以信噪比最优为准则&#xff0c;对地杂波抑制的同时有效保留动目标后向散射能量&#xff0c;有效提高运动目标的检测概率和动目标信号输出信杂比&#xff0c;提供理…...

JavaEE多线程(2)

文章目录 1..多线程的安全1.1出现多线程不安全的原因1.2解决多线程不安全的⽅法1.3三种典型死锁场景1.4如何避免死锁问题2.线程等待通知机制2.1等待通知的作用2.2等待通知的方法——wait2.3唤醒wait的方法——notify 1…多线程的安全 1.1出现多线程不安全的原因 线程在系统中…...

中新赛克两款数据安全产品成功获得“可信数安”评估测试证书

6月19日&#xff0c;2024数据智能大会在北京盛大召开。 会上&#xff0c;中国2024年上半年度“可信数安”评估测试证书正式颁发。中新赛克两款参评产品凭借过硬的技术水准和卓越的应用效果&#xff0c;成功获得专项测试证书。 2024年上半年度“可信数安”评估测试通过名单 中新…...

代码随想录——分割回文串(Leetcode 131)

题目链接 回溯 class Solution {List<List<String>> res new ArrayList<List<String>>();List<String> list new ArrayList<String>();public List<List<String>> partition(String s) {backtracking(s, 0);return res;}p…...

Rust 学习方法及学习路线汇总

Rust 学习方法及学习路线汇总 Rust 是一种系统编程语言&#xff0c;旨在提供安全性、并发性和高性能。它是由 Mozilla 公司开发的&#xff0c;于 2010 年首次发布。Rust 能够帮助开发者编写可靠和高效的软件&#xff0c;因此受到了广泛的关注和认可。 如果你有兴趣学习 Rust&…...

一名女DBA的感谢信,到底发生了什么?

昨日我们收到这样一通来电 “早上九点刚上班便收到业务投诉电话&#xff0c;系统卡顿&#xff0c;接口失败率大增&#xff0c;怀疑数据库问题。打开运维平台发现是国产库&#xff0c;生无可恋&#xff0c;第一次生产环境遇到国产库性能问题&#xff0c;没什么排查经验&#xf…...

群晖NAS本地部署并运行一个基于大语言模型Llama2的个人本地聊天机器人

前言 本文主要分享如何在群晖 NAS 本地部署并运行一个基于大语言模型 Llama 2 的个人本地聊天机器人并结合内网穿透工具发布到公网远程访问。本地部署对设备配置要求高一些,如果想要拥有比较好的体验,可以使用高配置的服务器设备. 目前大部分大语言模型的产品都是基于网络线上…...

HarmonyOS模拟器(phone-x86-api9)一直卡顿的解决方法

在DevEco Studio 3.1.1 Release版本中的Device Manager中创建本地的模拟器&#xff0c;创建phone-x86-api9模拟器成功&#xff0c;但是启动该新建的模拟器一直显示"HarmonyOS"logo图片&#xff0c;然后一直卡在这里&#xff0c;运行结果如下所示&#xff1a; 检查模…...

排序题目:有序数组的平方

文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;有序数组的平方 出处&#xff1a;977. 有序数组的平方 难度 2 级 题目描述 要求 给定按非递减顺序排序的整…...

PPT可以转换成Word吗?归纳了三种转换方式

PPT可以转换成Word吗&#xff1f;在当今快节奏的工作和学习环境中&#xff0c;不同格式文件之间的转换变得日益重要。PPT作为演示文稿制作的首选工具&#xff0c;广泛应用于会议演讲、教育培训等多个场景&#xff0c;而Word则是文档编辑与编排的基石。为了便于进一步编辑、分享…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...