当前位置: 首页 > news >正文

系统编程:互斥锁,条件变量

互斥锁

使用过程:
1,声明锁: pthread_mutex_t lock;
2,初始化锁:pthread_mutex_init(&lock,NULL);
3,在线程的方法函数中上锁和解锁:(成对出现)
pthread_mutex_lock(&lock);
pthread_mutex_unlock(&lock);
4,销毁锁:pthread_mutex_destroy(&lock);

代码示例:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>pthread_mutex_t lock;//在全局区声明互斥锁void *tick(void *arg)
{static int num =10;while(num>0){pthread_mutex_lock(&lock);if(num<=0){pthread_mutex_unlock(&lock);break;}num--;sleep(1);printf("线程%ld销售了一张票,还剩%d张\n",pthread_self(),num);pthread_mutex_unlock(&lock);}
}int main(int argc,char const *argv[])
{pthread_mutex_init(&lock,NULL);//初始化互斥锁pthread_t p1,p2,p3,p4; //定义四个线程;共享此进程的数据pthread_create(&p1,NULL,tick,NULL);pthread_create(&p2,NULL,tick,NULL);pthread_create(&p3,NULL,tick,NULL);pthread_create(&p4,NULL,tick,NULL);//创建四个线程pthread_join(p1,NULL);pthread_join(p2,NULL);pthread_join(p3,NULL);pthread_join(p4,NULL);//等待四个线程结束pthread_mutex_destroy(&lock);//销毁互斥锁return 0;
}

互斥锁+条件变量

条件变量:使用过程:
1,声明条件变量 pthread_cond_t cond;
2,初始化条件变量 pthread_cond_init(&cond,NULL);
3,在一对互斥锁中间:pthread_cond_wait(&cond,&lock);//会打开互斥锁,并且阻塞程序,–直到另一个信号函数pthread_cond_broadcast(&cond);被执行时解除阻塞.或者pthread_cond_signal(&cond)函数;
4,释放条件变量pthread_cond_destroy(&cond);

代码示例:生产者-消费者模型

#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>pthread_mutex_t lock;//声明互斥锁
pthread_cond_t cond; //声明条件变量int num = 0; //声明记录库存数量的变量void *produce(void *argv)
{while(1){pthread_mutex_lock(&lock);while(num >= 10){printf("库存已满,线程%ld停止生产\n",pthread_self());pthread_cond_wait(&cond,&lock);}num++;printf("线程%ld生产了一个商品,当前库存数量为:%d\n",pthread_self(),num);pthread_cond_broadcast(&cond);pthread_mutex_unlock(&lock);sleep(1);}return NULL;
}void *sale(void *argv)
{while(1){pthread_mutex_lock(&lock);while(num <= 0){printf("库存为0,线程%ld停止销售\n",pthread_self());pthread_cond_wait(&cond,&lock);}num--;printf("线程%ld销售了一个商品,当前库存数量为:%d\n",pthread_self(),num);pthread_cond_broadcast(&cond);pthread_mutex_unlock(&lock);int t = rand()%5;sleep(t);}
}void closeThread(pthread_t ts[],int len) //声明释放线程的方法
{for(int i = 0; i < len; i++){pthread_join(ts[i],NULL);}
}int main(int argc, char const *argv[])
{srand(time(NULL));pthread_mutex_init(&lock,NULL);//初始化互斥锁pthread_cond_init(&cond,NULL);//初始化条件变量pthread_t ps[3];//声明生产者线程组pthread_t ss[5];//声明销售者线程组int i;for(i = 0; i < 3; i++){pthread_create(&ps[i],NULL,produce,NULL);//创建线程并执行}for(int i = 0; i < 5; i++){pthread_create(&ps[i],NULL,sale,NULL);}int plen = sizeof(ps)/sizeof(pthread_t);closeThread(ps,plen);//释放生产者线程int slen = sizeof(ss)/sizeof(pthread_t);closeThread(ss,slen);//释放消费者线程pthread_mutex_destroy(&lock);//释放互斥锁pthread_cond_destroy(&cond);//释放条件变量return 0;
}

相关文章:

系统编程:互斥锁,条件变量

互斥锁 使用过程: 1,声明锁: pthread_mutex_t lock; 2,初始化锁:pthread_mutex_init(&lock,NULL); 3,在线程的方法函数中上锁和解锁:(成对出现) pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock); 4,销毁锁:pthread_mutex_destroy(&lock); 代码示例:…...

蓝鹏测控公司全长直线度算法项目多部门现场组织验收

关键字:全场直线度算法,直线度测量仪,直线度检测,直线度测量设备, 6月18日上午&#xff0c;蓝鹏测控公司全长直线度算法项目顺利通过多部门现场验收。该项目由公司技术部、开发部、生产部等多个部门共同参与&#xff0c;旨在提高直线度测量精度&#xff0c;满足高精度制造领域需…...

使用Python进行音频处理

通常会使用wave模块。但是&#xff0c;如果您想要处理其他类型的音频文件&#xff0c;或者需要更高级的音频处理功能&#xff0c;您可能需要安装第三方库&#xff0c;如pydub、soundfile、numpy等。 import wave # 读取WAV文件 with wave.open(input.wav, rb) as wav_file: …...

家有老人小孩,室内灰尘危害大!资深家政教你选对除尘空气净化器

哈喽&#xff0c;各位亲爱的朋友们&#xff01;今天我们来聊聊每次大扫除时最让人头疼的问题——灰尘。你有没有发现&#xff0c;两天不打扫&#xff0c;桌子上就能积上一层灰&#xff1b;阳光一照&#xff0c;地板上的灰尘都在跳舞&#xff1b;整理被子的时候&#xff0c;空气…...

AI在创造与毁灭之间摇摆:音乐产业的机遇与挑战并存

AI到底在创造还是毁掉音乐&#xff1f; 最近一个月&#xff0c;轮番上线的音乐大模型&#xff0c;一举将素人生产音乐的门槛降到了最低&#xff0c;并掀起了音乐圈会不会被AI彻底颠覆的讨论。短暂的兴奋后&#xff0c;AI产品的版权归属于谁&#xff0c;创意产业要如何在AI的阴…...

Spring Boot集成 Spring Retry 实现容错重试机制并附源码

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…...

MDK-ARM 编译后 MAP 文件分析

本文配合 STM32 堆栈空间分布 食用更佳&#xff01; 一图胜千言。。。...

antv g6实现系统拓扑图

1 背景 为例描述各个服务、redis、mysql等之间的联系及其健康状态&#xff0c;构建系统拓扑图&#xff0c;考虑 g6 更适合处理大量数据之间的关系&#xff0c;所以我们采用g6来绘制前端的图形。 g6提供的支持&#xff1a; 节点/边类型多样&#xff0c;同样支持自定义对于节点…...

因路径规划异常导致导航停止 Failed to pass global plan to the controller

因路径规划异常导致导航停止 Failed to pass global plan to the controller 控制台错误信息: [ WARN] [1718875656.343893537, 93.698000000]: Transformed plan is empty. Aborting local planner! [ERROR] [1718875656.343922719, 93.698000000]: move_base.cpp:854 Faile…...

AOSP开发环境搭建

目录 一、安装虚拟机 二、安装Ubuntu 三、安装VMware tools 3.1、通用安装 3.2、Ubuntu22.04 中Drag and drop is not supported问题 四、安装依赖环境 4.1、安装git 4.2、下载Python3 4.3、解压Python3 4.4、编译与安装Python3 3.sudo make install 4.5、安装Pyth…...

React native新架构组成

React Native 的新架构&#xff08;New Architecture&#xff09;引入了一些新的组件和概念&#xff0c;旨在提高性能、增强灵活性和简化跨平台开发。主要组成部分包括&#xff1a; Fabric: Fabric Renderer: Fabric 是新的渲染引擎&#xff0c;它旨在取代现有的渲染引擎。与…...

Spring Security+Spring Boot实现登录认证以及权限认证

基本概念 “Authentication(认证)”是spring security框架中最重要的功能之一&#xff0c;所谓认证&#xff0c;就是对当前访问系统的用户给予一个合法的身份标识&#xff0c;用户只有通过认证才可以进入系统&#xff0c;在物理世界里&#xff0c;有点类似于“拿工卡刷门禁”的…...

5款堪称变态的AI神器,焊死在电脑上永不删除!

一 、AI视频合成工具——Runway&#xff1a; 第一款RunWay&#xff0c;你只需要轻轻一抹&#xff0c;视频中的元素就会被擦除&#xff0c;再来轻轻一抹&#xff0c;直接擦除&#xff0c;不喜欢这个人直接擦除&#xff0c;一点痕迹都看不出来。 除了视频擦除功能外&#xff0c;…...

Python和OpenCV图像分块之图像边长缩小比率是2

import cv2 import numpy as npimg cv2.imread("F:\\mytupian\\xihuduanqiao.jpg") # 低反光 cv2.imshow(image, img) # # 图像分块 # dst np.zeros(img.shape, img.dtype) ratio 2 #图像边长缩小比率是2&#xff0c;也就是一张图片被分割成四份 height, wi…...

C语言中的位域(bit-field)是什么,以及它的用途和优缺点

在C语言中&#xff0c;位域&#xff08;bit-field&#xff09;是一种特殊的数据结构&#xff0c;它允许在结构体&#xff08;struct&#xff09;中定义其成员所占用的位数&#xff0c;而不是使用整个字节或更大的内存空间。位域通常用于存储布尔值、状态标志、硬件控制位等&…...

从面试角度了解前端基础知识体系

目录 前端专业知识相关面试考察点 HTML 与 CSS Javascript 网络相关 浏览器相关 安全相关 算法与数据结构 计算机通用知识 前端项目经验相关面试考察点 前端框架与工具库 Node.js 与服务端 性能优化 前端工程化 开发效率提升 监控、灰度与发布 多人协作 结束语…...

【DKN: Deep Knowledge-Aware Network for News Recommendation】

DKN: Deep Knowledge-Aware Network for News Recommendation 摘要 在线新闻推荐系统旨在解决新闻信息爆炸的问题&#xff0c;为用户进行个性化推荐。 总体而言&#xff0c;新闻语言高度凝练&#xff0c;充满知识实体和常识。 然而&#xff0c;现有的方法并没有意识到这些外部…...

Linux管道与重定向

管道 是进程通信的方法之一&#xff0c;在Linux中用命令1|命令2的形式表示&#xff0c;将前一个命令的结果作为后续命令的参数进行输入&#xff0c;也有tee管道&#xff0c;可以进行多次筛选&#xff0c;即多次使用|过滤命令。 重定向 文件描述符FD Linux中输入输出分为三种…...

kotlin数组

1、kotlin中的数组与java数组比较&#xff1a; 2、创建 fun main() {// 值创建val a intArrayOf(1,2,3)// 表达式创建val b IntArray(3){println("it: ${it}")it1}println("a数组&#xff1a;${a.contentToString()}, 长度&#xff1a;${a.size}")prin…...

SpringSecurity实战入门——认证

项目代码 gson/spring-security-demo 简介 Spring Security 是 Spring 家族中的一个安全管理框架。相比与另外一个安全框架Shiro,它提供了更丰富的功能,社区资源也比Shiro丰富。 一般来说中大型的项目都是使用SpringSecurity来做安全框架。小项目有Shiro的比较多,因为相比…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...