Redis分片集群搭建
主从模式可以解决高可用、高并发读的问题。但依然有两个问题没有解决:
- 海量数据存储
- 高并发写
要解决这两个问题就需要用到分片集群了。分片的意思,就是把数据拆分存储到不同节点,这样整个集群的存储数据量就更大了。
Redis分片集群的结构如图
分片集群特征:
- 集群中有多个master,每个master保存不同分片数据 ,解决海量数据存储问题
- 每个master都可以有多个slave节点 ,确保高可用
- master之间通过ping监测彼此健康状态 ,类似哨兵作用
- 客户端请求可以访问集群任意节点,最终都会被转发到数据所在节点
- 搭建分片集群
- Redis分片集群最少也需要3个master节点,由于我们的机器性能有限,我们只给每个master配置1个slave,形成最小的分片集群:
计划部署的节点信息如下:
容器名 | 角色 | IP | 映射端口 |
---|---|---|---|
r1 | master | 192.168.150.101 | 7001 |
r2 | master | 192.168.150.101 | 7002 |
r3 | master | 192.168.150.101 | 7003 |
r4 | slave | 192.168.150.101 | 7004 |
r5 | slave | 192.168.150.101 | 7005 |
r6 | slave | 192.168.150.101 | 7006 |
集群配置
分片集群中的Redis节点必须开启集群模式,一般在配置文件中添加下面参数:
port 7000
cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000
appendonly yes
其中有3个我们没见过的参数:
- cluster-enabled:是否开启集群模式
- cluster-config-file:集群模式的配置文件名称,无需手动创建,由集群自动维护
- cluster-node-timeout:集群中节点之间心跳超时时间
一般搭建部署集群肯定是给每个节点都配置上述参数,不过考虑到我们计划用docker-compose部署,因此可以直接在启动命令中指定参数,偷个懒。
在虚拟机的/root目录下新建一个redis-cluster目录,然后在其中新建一个docker-compose.yaml文件,内容如下:
version: "3.2"services:r1:image: rediscontainer_name: r1network_mode: "host"entrypoint: ["redis-server", "--port", "7001", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]r2:image: rediscontainer_name: r2network_mode: "host"entrypoint: ["redis-server", "--port", "7002", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]r3:image: rediscontainer_name: r3network_mode: "host"entrypoint: ["redis-server", "--port", "7003", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]r4:image: rediscontainer_name: r4network_mode: "host"entrypoint: ["redis-server", "--port", "7004", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]r5:image: rediscontainer_name: r5network_mode: "host"entrypoint: ["redis-server", "--port", "7005", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]r6:image: rediscontainer_name: r6network_mode: "host"entrypoint: ["redis-server", "--port", "7006", "--cluster-enabled", "yes", "--cluster-config-file", "node.conf"]注意:使用Docker部署Redis集群,network模式必须采用host3.1.2.启动集群
进入/root/redis-cluster目录,使用命令启动redis:docker-compose up -d启动成功,可以通过命令查看启动进程:ps -ef | grep redis
# 结果:
root 4822 4743 0 14:29 ? 00:00:02 redis-server *:7002 [cluster]
root 4827 4745 0 14:29 ? 00:00:01 redis-server *:7005 [cluster]
root 4897 4778 0 14:29 ? 00:00:01 redis-server *:7004 [cluster]
root 4903 4759 0 14:29 ? 00:00:01 redis-server *:7006 [cluster]
root 4905 4775 0 14:29 ? 00:00:02 redis-server *:7001 [cluster]
root 4912 4732 0 14:29 ? 00:00:01 redis-server *:7003 [cluster]
注意:使用Docker部署Redis集群,network模式必须采用host
启动集群
进入/root/redis-cluster目录,使用命令启动redis:
docker-compose up -d
启动成功,可以通过命令查看启动进程:
ps -ef | grep redis
# 结果:
root 4822 4743 0 14:29 ? 00:00:02 redis-server *:7002 [cluster]
root 4827 4745 0 14:29 ? 00:00:01 redis-server *:7005 [cluster]
root 4897 4778 0 14:29 ? 00:00:01 redis-server *:7004 [cluster]
root 4903 4759 0 14:29 ? 00:00:01 redis-server *:7006 [cluster]
root 4905 4775 0 14:29 ? 00:00:02 redis-server *:7001 [cluster]
root 4912 4732 0 14:29 ? 00:00:01 redis-server *:7003 [cluster]
可以发现每个redis节点都以cluster模式运行。不过节点与节点之间并未建立连接。
接下来,我们使用命令创建集群:
# 进入任意节点容器
docker exec -it r1 bash
# 然后,执行命令
redis-cli --cluster create --cluster-replicas 1 \
192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 \
192.168.150.101:7004 192.168.150.101:7005 192.168.150.101:7006
命令说明:
- redis-cli --cluster:代表集群操作命令
- create:代表是创建集群
- –cluster-replicas 1 :指定集群中每个master的副本个数为1
- 此时节点总数 ÷ (replicas + 1) 得到的就是master的数量n。因此节点列表中的前n个节点就是master,其它节点都是slave节点,随机分配到不同master
输入命令后控制台会弹出下面的信息:
这里展示了集群中master与slave节点分配情况,并询问你是否同意。节点信息如下:
- 7001是master,节点id后6位是da134f
- 7002是master,节点id后6位是862fa0
- 7003是master,节点id后6位是ad5083
- 7004是slave,节点id后6位是391f8b,认ad5083(7003)为master
- 7005是slave,节点id后6位是e152cd,认da134f(7001)为master
- 7006是slave,节点id后6位是4a018a,认862fa0(7002)为master
输入yes然后回车。会发现集群开始创建,并输出下列信息:
接着,我们可以通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
结果:
- 散列插槽
- 数据要分片存储到不同的Redis节点,肯定需要有分片的依据,这样下次查询的时候才能知道去哪个节点查询。很多数据分片都会采用一致性hash算法。而Redis则是利用散列插槽(hash slot)的方式实现数据分片
- 在Redis集群中,共有16384个hash slots,集群中的每一个master节点都会分配一定数量的hash slots。具体的分配在集群创建时就已经指定了:
如图中所示:
- Master[0],本例中就是7001节点,分配到的插槽是0~5460
- Master[1],本例中就是7002节点,分配到的插槽是5461~10922
- Master[2],本例中就是7003节点,分配到的插槽是10923~16383
- 当我们读写数据时,Redis基于CRC16 算法对key做hash运算,得到的结果与16384取余,就计算出了这个key的slot值。然后到slot所在的Redis节点执行读写操作。
不过hash slot的计算也分两种情况:
- 当key中包含{}时,根据{}之间的字符串计算hash slot
- 当key中不包含{}时,则根据整个key字符串计算hash slot
- 例如:
- key是user,则根据user来计算hash slot
- key是user:{age},则根据age来计算hash slot
我们来测试一下,先于7001建立连接:
# 进入容器
docker exec -it r1 bash
# 进入redis-cli
redis-cli -p 7001
# 测试
set user jack
会发现报错了:
提示我们MOVED 5474,其实就是经过计算,得出user这个key的hash slot 是5474,而5474是在7002节点,不能在7001上写入!!
说好的任意节点都可以读写呢?
这是因为我们连接的方式有问题,连接集群时,要加-c参数:
# 通过7001连接集群
redis-cli -c -p 7001
# 存入数据
set user jack
结果如下:可以看到,客户端自动跳转到了5474这个slot所在的7002节点。
现在,我们添加一个新的key,这次加上{}:
# 试一下key中带{}
set user:{age} 21# 再试一下key中不带{}
set age 20
结果如下:
可以看到user:{age}和age计算出的slot都是741。
3.3.故障转移
分片集群的节点之间会互相通过ping的方式做心跳检测,超时未回应的节点会被标记为下线状态。当发现master下线时,会将这个master的某个slave提升为master。
我们先打开一个控制台窗口,利用命令监测集群状态:
watch docker exec -it r1 redis-cli -p 7001 cluster nodes
命令前面的watch可以每隔一段时间刷新执行结果,方便我们实时监控集群状态变化。
接着,我们故技重施,利用命令让某个master节点休眠。比如这里我们让7002节点休眠,打开一个新的ssh控制台,输入下面命令:
docker exec -it r2 redis-cli -p 7002 DEBUG sleep 30
可以观察到,集群发现7002宕机,标记为下线:
过了一段时间后,7002原本的小弟7006变成了master:
而7002被标记为slave,而且其master正好是7006,主从地位互换。
3.4.总结
Redis分片集群如何判断某个key应该在哪个实例?
- 将16384个插槽分配到不同的实例
- 根据key计算哈希值,对16384取余
- 余数作为插槽,寻找插槽所在实例即可
- 如何将同一类数据固定的保存在同一个Redis实例?
- Redis计算key的插槽值时会判断key中是否包含{},如果有则基于{}内的字符计算插槽
- 数据的key中可以加入{类型},例如key都以{typeId}为前缀,这样同类型数据计算的插槽一定相同
3.5.Java客户端连接分片集群(选学)
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致,参考2.5节:
1)引入redis的starter依赖
2)配置分片集群地址
3)配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:
spring:redis:cluster:nodes:- 192.168.150.101:7001- 192.168.150.101:7002- 192.168.150.101:7003- 192.168.150.101:8001- 192.168.150.101:8002- 192.168.150.101:8003
相关文章:

Redis分片集群搭建
主从模式可以解决高可用、高并发读的问题。但依然有两个问题没有解决: 海量数据存储高并发写 要解决这两个问题就需要用到分片集群了。分片的意思,就是把数据拆分存储到不同节点,这样整个集群的存储数据量就更大了。 Redis分片集群的结构如…...
请解释Java中的策略模式,并举例说明其应用场景和实现方式。请解释Java中的模板方法模式,并讨论其在实际项目中的应用。
请解释Java中的策略模式,并举例说明其应用场景和实现方式。 策略模式(Strategy Pattern) 策略模式是一种行为设计模式,它使你能够定义一系列算法,并将每一个算法封装起来,使它们可以互相替换。策略模式使…...

Vim基础操作:常用命令、安装插件、在VS Code中使用Vim及解决Vim编辑键盘错乱
Vim模式 普通模式(Normal Mode): 这是 Vim 的默认模式,用于执行文本编辑命令,如复制、粘贴、删除等。在此模式下,你可以使用各种 Vim 命令来操作文本。插入模式(Insert Mode)&#…...

基于Windows API DialogBox的对话框
在C中,DialogBox函数是Windows API的一部分,它用于在Win32应用程序中创建并显示一个模态对话框。DialogBox函数是USER32.DLL中的一个导出函数,因此你需要在你的C Win32应用程序中链接到这个库。 #include "framework.h" #include …...

五十一、openlayers官网示例Layer Min/Max Resolution解析——设置图层最大分辨率,超过最大值换另一个图层显示
使用minResolution、maxResolution分辨率来设置图层显示最大分辨率。 <template><div class"box"><h1>Layer Min/Max Resolution</h1><div id"map" class"map"></div></div> </template><…...

24年计算机等级考试22个常见问题解答❗
24年9月计算机等级考试即将开始,整理了报名中容易遇到的22个问题,大家对照入座,避免遇到了不知道怎么办? 1、报名条件 2、报名入口 3、考生报名之后后悔了,不想考了,能否退费? 4、最多能够报多少…...

obsidian制作自己的主题一文入门
制作自己的主题 我最近发现一款插件,直接把obsidian的文章格式复制到公众号中。 我非常喜欢这个功能,这将减少公众号排版的时间,同时保持公众号文章格式的一致性。 但是这个插件提供的模板不能满足我的需求,所以,需要…...
游戏心理学Day20
扩展的8种玩家 完成主义者 此类玩家关心的是成就和进展,其主要目的是完成游戏的主要目标,其次是完成游戏的次要目标之后才是游戏中的其他内容,在多人游戏中完成主义者会致力于炫耀自己的状态和财富。如果游戏以胜负为目标,那么此…...

Serverless如何赋能餐饮行业数字化?乐凯撒思变之道
导语 | 在数字化浪潮席卷全球的今天,每一个行业都在经历着前所未有的变革。餐饮行业作为人们日常生活中不可或缺的一部分,更是面临着巨大的转型压力。如何完成数字化转型,打破传统经营模式的限制,成为摆在众多餐饮商家面前的一道难…...

css系列:音频播放效果-波纹律动
介绍 语音播放的律动效果,通俗来说就是一个带动画的特殊样式的进度条,播放的部分带有上下律动的动画,未播放的部分是普通的灰色竖状条。 实现中夹带了less变量、继承和循环遍历,可以顺带学习一下。 结果展示 大致效果如图所示…...

WPF学习(1)--类与类的继承
在面向对象编程中,继承是一种机制,允许一个类(称为子类或派生类)从另一个类(称为父类或基类)继承属性和方法。继承使我们能够创建一个通用类,然后根据需要扩展或修改它以创建更具体的类。以下是…...
Spring Boot框架的原理及应用详解(六)
本系列文章简介: 在当今的软件开发世界中,快速迭代、高效开发以及易于维护成为了开发者们不断追求的目标。Spring Boot作为Spring框架的一个子项目,自其诞生以来就凭借其“约定大于配置”的理念和自动配置的特性,迅速在Java开发社…...
密码学与信息安全面试题及参考答案(2万字长文)
目录 什么是密码学?它的主要目标是什么? 请解释明文、密文、加密和解密的概念。 密码系统的安全性通常基于哪三种假设? 什么是Kerckhoffs原则?它对现代密码学设计有何意义? 简述密码学中的“混淆”和“扩散”概念。 什么是AES(高级加密标准)?AES有几种常见的密钥…...

C++语法19 循环嵌套结构(for/while循环)
语法阶段已经更新到第18章了,前面的知识你都学会了吗?如果还没有学习前面的知识,请点击👉语法专栏进行学习哦! 目录 循环嵌套 训练:数字矩形 解析 参考代码 训练:星号三角形 解析 参考代码 …...

AtomicInteger原理和CAS与Synchronized(juc编程)
AtomicInteger原理 4.6.1 原理介绍 AtomicInteger的本质:自旋锁 CAS算法 CAS的全成是: Compare And Swap(比较再交换); 是现代CPU广泛支持的一种对内存中的共享数据进行操作的一种特殊指令。CAS可以将read-modify-write转换为原子操作,这…...

抖音a_bogus,mstoken全参数爬虫逆向补环境2024-06-15最新版
抖音a_bogus,mstoken全参数爬虫逆向补环境2024-06-15最新版 接口及参数 打开网页版抖音,右键视频进入详情页。F12打开控制台筛选detail,然后刷新网页,找到请求。可以发现我们本次的参数目标a_bogus。a_bogus有时长度为168有时为172…...

【机器学习】机器学习重要方法—— 半监督学习:理论、算法与实践
文章目录 引言第一章 半监督学习的基本概念1.1 什么是半监督学习1.2 半监督学习的优势 第二章 半监督学习的核心算法2.1 自训练(Self-Training)2.2 协同训练(Co-Training)2.3 图半监督学习(Graph-Based Semi-Supervise…...
leetcode70 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. 2 阶 示例 2&#x…...

ENVI实战—一文搞定非监督分类
实验1:使用isodata法分类 目的:学会使用isodata法开展非监督分类 过程: ①导入影像:打开ENVI,按照“文件→打开为→光学传感器→ESA→Sentinel-2”的顺序,打开实验1下载的哨兵2号数据。 图1 ②区域裁剪…...

【Qt 学习笔记】Qt系统相关 | Qt事件 | 事件的介绍及基本概念
博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Qt系统相关 | Qt事件 | 事件的介绍及基本概念 文章编号:Qt…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...