CentOS中的rename命令
目录
- CentOS中的rename命令
- 基本语法
- 使用示例
- 注意事项
- 安装prename
CentOS中的rename命令
在CentOS系统中,rename命令通常是指util-linux包中提供的版本,它用于批量重命名文件,但与Perl版本的rename命令相比,功能较为简单,通常只支持基本的字符串替换。
基本语法
在CentOS中,rename命令的基本语法如下:
rename '旧字符串' '新字符串' 文件列表
使用示例
- 将所有.txt文件改为.text扩展名:
rename .txt .text *.txt
这个命令会将当前目录下所有的.txt文件重命名为.text文件。
- 将文件名中的空格替换为下划线:
rename ' ' '_' *
这个命令会将当前目录下所有文件名中的空格替换为下划线。
- 将文件名中的特定字符串替换为其他字符串:
rename 旧名字 新名字 *.*
这个命令会将当前目录下所有文件名中的“旧名字”替换为“新名字”。
注意事项
在CentOS中,rename命令不支持复杂的正则表达式,只能进行简单的字符串替换。
如果需要使用Perl正则表达式的强大功能来重命名文件,可能需要安装prename或者perl-rename包,这取决于你的CentOS版本和仓库。安装后,你可以使用prename命令来实现更复杂的重命名操作。
安装prename
在某些情况下,你可能需要使用Perl版本的rename命令,这时候你可以安装prename:
yum install prename
或者,如果你需要的是perl-rename:
yum install perl-File-Rename
安装后,你可以使用prename或者rename(Perl版本的)来实现复杂的文件重命名任务。
相关文章:
CentOS中的rename命令
目录 CentOS中的rename命令基本语法使用示例注意事项安装prename CentOS中的rename命令 在CentOS系统中,rename命令通常是指util-linux包中提供的版本,它用于批量重命名文件,但与Perl版本的rename命令相比,功能较为简单ÿ…...
redis.conf 参数详解,方便进行性能优化配置
以下是redis.conf中一些常见参数的详细说明: daemonize:是否以后台进程运行,默认为no; pidfile:如以后台进程运行,则需指定一个pid,默认为/var/run/redis.pid;bind:绑定主…...
微信小程序登录流程详情及Java代码
一、流程图 说明: 调用 wx.login() 获取 临时登录凭证code ,并回传到开发者服务器。 调用 auth.code2Session 接口,换取 用户唯一标识 OpenID 和 会话密钥 session_key。 获取手机号,调用wx.getPhoneNumber() ,获取加密…...
c++qt合并两张灰度图像
需求:将两张尺寸相同的灰度图像进行合并,合并后的图像,每个像素点灰度值为两张原图对应像素点灰度值之和。若超过255,则最大为255。 方法一: 将图像读取为cv::Mat,再调用opencv的cv::add方法,进…...
Uniapp通过年月日时间转变星期格式
效果图 参靠微信小程序:日常记一记 代码 <view v-for"(d,index) in dataList" >{{getWeekDay(d.ctime)}} //时间格式:2024-06-21</view> js export default {data(){return {dataList:[],//时间数组}},onLoad() {this.loadList…...
如何编写和执行高效的测试计划
如何编写和执行高效的测试计划 1. 测试计划概述2. 测试阶段详解3. 测试计划模板4. 关键注意事项总结 1. 测试计划概述 测试计划是指导整个测试过程的重要文档,其中包含了测试策略、资源分配、进度安排以及风险评估等内容。 一个完善的测试计划应当包括以下几个主要…...
【MySQL连接器(Python)指南】03-MySQL连接器(Python)安装
文章目录 前言1. 从二进制发行版中安装连接器1.1 使用pip安装MySQL连接器1.2 使用MySQL Yum Repository安装1.3 使用Debian软件包安装连接器2. 从源代码发行版安装连接器2.1 在Windows上源码安装2.2 在类Unix系统上源码安装3. 验证连接器安装总结前言 MySQL连接器(Python),用于…...
Spring Boot组件化与参数校验
Spring Boot组件化与参数校验 Spring Boot版本选择 2.3.x版本 2.6.x版本 Spring Boot核心思想 约定大于配置,简化繁琐的配置 Spring Boot自动配置原理 SpringBootApplication: Spring Boot应用标注在某个类上说明这个类是SpringBoot的主配置类,Spr…...
实现可扩展的电商返利平台:技术选型与挑战
实现可扩展的电商返利平台:技术选型与挑战 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在当今数字化和电商兴盛的时代,返利平台成为…...
从0开始C++(三):构造函数与析构函数详解
目录 构造函数 构造函数的基本使用 构造函数也支持函数重载 构造函数也支持函数参数默认值 构造初始化列表 拷贝构造函数 浅拷贝和深拷贝 析构函数 总结 练习一下ヽ( ̄▽ ̄)ノ 构造函数 构造函数的基本使用 构造函数是一种特殊的成…...
行车记录仪文件夹“0字节”现象解析与恢复策略
一、行车记录仪文件夹“0字节”现象描述 行车记录仪作为现代驾驶中的必备设备,其储存的视频数据对于事故记录和取证至关重要。然而,有时车主们可能会遇到这样一个问题:行车记录仪的某个文件夹内的文件突然变成了0字节大小,无法正…...
呼叫中心系统的功能都有哪些?okcc呼叫中心pscc磐石云呼叫系统部署
当前电话营销普及到各行各业,方便快捷成了大部分企业在宣传自己公司的产品时必用的一种营销方式,但是电话营销在管理上也存在许多问题。例如:销售员与客户沟通前,未能详细了解客户的资料;多名销售员重复拨打同一个客户…...
2024.06.08校招 实习 内推 面经
绿*泡*泡VX: neituijunsir 交流*裙 ,内推/实习/校招汇总表格 1、提前批 | 中电锦江2025届提前批招聘 提前批 | 中电锦江2025届提前批招聘 2、实习 | 国电电力2025届暑期实习生计划启动! 实习 | 国电电力2025届暑期实习生计划启动&#x…...
Polyplus——转染试剂专业供应商
PolyPlus-transfection是一家专业的转染试剂研发和生产的生物技术公司,拥有20年的的转染试剂研发经验,通过创新的核酸转染解决方案支持基因和细胞治疗、生物制剂制造和生命科学研究。目前已经通过了ISO 9001: 2000质量体系认证,已经开发了一系…...
微服务架构-线上治理、线下治理与架构演进
目录 一、线上治理 1.1 概述 1.2 线上预案体系 1.2.1 概述 1.2.2 变更引起的故障 1.2.3 流量和容量变化引起的故障 1.2.4 依赖故障 1.2.5 机房、网络等硬件和环境故障 1.2.6 其他 1.2.7 故障的场景化 1.3 基于Metric的预案自动触发 1.4 治理参数动态调整 1.4.1 举例…...
网络安全:什么是SQL注入
文章目录 网络安全:什么是SQL注入引言SQL注入简介工作原理示例代码 攻击类型为什么SQL注入危险结语 网络安全:什么是SQL注入 引言 在数字化时代,数据安全成为了企业和个人最关心的问题之一。SQL注入(SQL Injection)是…...
从零开始精通Onvif之网络配置
💡 如果想阅读最新的文章,或者有技术问题需要交流和沟通,可搜索并关注微信公众号“希望睿智”。 概述 网络配置是Onvif规范中的重要组成部分,允许用户通过网络远程配置和管理设备的网络设置,比如:DHCP、IP地…...
在 macOS 上使用 Homebrew 安装和配置 Python 及 Tk 库
在 macOS 上,系统自带的 /usr/bin/python3 版本较旧,且直接升级系统自带的 Python 版本可能会影响系统稳定性。因此,推荐使用 Homebrew 来安装和管理 Python 及其相关库。本文将详细介绍如何通过 Homebrew 安装和配置 Python 3 及 Tk 库&…...
【机器学习 复习】第2章 线性回归及最大熵模型
一、概念 1.回归就是用一条曲线对数据点进行拟合,该曲线称为最佳拟合曲线,这个拟合过程称为回归。 2.一个自变量 叫 一元线性回归,大于一个自变量 叫 多元线性回归。 (1)多元回归:两个x,一个…...
关于椭圆的方程(有Python画的动图)
关于椭圆的方程(有Python画的动图) flyfish 几何定义 椭圆是平面上所有到两个固定点(焦点)的距离之和为常数的点的集合。这两个固定点叫做焦点。 解析几何描述 设椭圆的两个焦点为 F 1 F_1 F1 和 F 2 F_2 F2ÿ…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
