论文学习_Large Language Models Based Fuzzing Techniques: A Survey
| 论文名称 | 发表时间 | 发表期刊 | 期刊等级 | 研究单位 |
| Large Language Models Based Fuzzing Techniques: A Survey | 2024年 | arXiv | - | 悉尼大学 |
0.摘要
| 研究背景 | 在软件发挥举足轻重作用的现代社会,软件安全和漏洞分析对软件开发至关重要,模糊测试作为一种高效的软件测试方法,并广泛应用于各个领域。大预言模型(LLM)的快速发展促进了其在软件测试领域的应用,并表现出卓越的性能。考虑到现有的模糊测试技术并非完全自动化,并且软件漏洞不断发展,基于大预言模型生成的模糊测试的趋势越来越明显。 |
| 研究内容 | 针对当前最先进的 LLM 技术、模糊测试技术、基于 LLM 的模糊测试技术进行了统计分析和讨论。并讨论了基于 MML 的牧户测试技术未来广泛部署和应用的潜力。 |
1. 引言
模糊测试自 20 世纪 90 年代以来已被广泛采用,其原理涉及生成一系列意想不到的输入来测试软件的可靠性和安全性。随着现代软件行业的发展,模糊测试已经成为软件测试的关键。目前,大语言模型在各个领域都展现出了强大的性能,其中也包括软件测试领域。与传统软件测试系统相比,大语言模型生成的软件测试在效率和准确性方面都有所提高,这些方法包括 TitanFuzz、FuzzGPT 以及针对不同软件类型的其他模糊测试。这些研究将不同的大语言模型与模糊测试技术相结合,并开发新的模糊测试系统,下面将详细介绍这些方法。
针对现有基于 LLM 的模糊测试技术,提出三个研究问题,(1)基于 LLM 的模糊测试技术在 AI 软件系统和非 AI 软件系统中的表现;(2)基于 LLM 的模糊测试技术相较于传统模糊测试技术有哪些优势;(3)基于 LLM 的模糊测试技术未来研究趋势和存在的挑战是什么?
2. 背景知识
2.1 大语言模型(LLM)
大型语言模型的出现为不同的复杂语言任务提供了很大的帮助,例如翻译、摘要、对话交互等(源于 Transformer 的引入)。根据 Humza Naveed 等人 2023 年 7 月的统计,从2019 年到 2023 年,总共出现了 75 个有影响力的大语言模型(涉及通用、医疗以及教育等领域)。
大语言模型主要可分为三类,分别是 Decoder-only 语言模型, Encoder-only masked 语言模型,Encoder-Decoder 语言模型。
- Decoder-only 语言模型(GPT):类似于一个讲故事的人。模型接收一个故事的开头,如“今天天气很好”。然后模型继续生成剩余的内容,如“适合出去转转”。这类模型擅长创造性的协作,比如写小说或自动生成文章。它更多的关注于从已有的信息扩展出新的内容。OpenAI选择 Decoder-Only 方案,因为它对自然语言生成特别有效。这种架构能够更好的理解和预测语言模式,尤其适合处理开放式、生成性的任务。
- Encoder-only masked 语言模型:类似于一个专业的内容评论家。模型接收待评论的内容,如一本书。然后模型输出对应的评论,如书籍的质量的高低、主题等。这类模型擅长处理输入数据,专注于理解和编码信息,而不是生成新的文本。这种架构在理解和分类任务中更为有效,尤其适合文本分类、情感分析等任务。
相关文章:
论文学习_Large Language Models Based Fuzzing Techniques: A Survey
论文名称发表时间发表期刊期刊等级研究单位Large Language Models Based Fuzzing Techniques: A Survey 2024年arXiv-悉尼大学 0.摘要 研究背景在软件发挥举足轻重作用的现代社会,软件安全和漏洞分析对软件开发至关重要,模糊测试作为一种高效的软件测试方法,并广泛应用于各个…...
响应式德米拉数字内容交易系统素材下载站模板
★模板说明★ 该数字交易系统设计非常完美,两种响应式模式,可打开边栏模式和盒子模式;八种网站颜色,四种风格颜色可供用户自行选择,还可在网站选背景图片;完美的分成系统、充值功能、个人中心等等都以html…...
数据库开发-MySQL
前言 首先来了解一下什么是数据库。 数据库:英文为 DataBase,简称DB,它是存储和管理数据的仓库。 像我们日常访问的电商网站京东,企业内部的管理系统OA、ERP、CRM这类的系统,以及大家每天都会刷的头条、抖音类的app…...
香港大带宽服务器高性能配置选择灵活
香港大带宽服务器是指在香港数据中心托管的,配备了高速网络连接的服务器。这些服务器通常用于需要大量数据传输和快速响应时间的应用,如视频流媒体、在线游戏、远程工作和大规模数据处理任务。具体分析如下,rak部落为您整理发布。 1. **内存配…...
Oracle中生僻汉字的解决办法
在Oracle数据库中处理生僻汉字时,主要面临的问题是某些字符集可能无法完全支持所有的汉字,特别是生僻字。以下是一些解决Oracle中生僻汉字问题的办法: 检查当前字符集: 使用SELECT USERENV(language) FROM dual;命令来查看当前数…...
在Kotlin中,`field`关键字是一个特殊的标识符,用于在属性的自定义getter和setter中访问backing field(存储属性值的实际字段)
在Kotlin中,field关键字是一个特殊的标识符,用于在属性的自定义getter和setter中访问backing field(存储属性值的实际字段)。Kotlin属性默认提供getter和setter方法,但当你需要自定义它们的行为时,可以使用…...
如何在 MySQL 中创建和使用事务?
目录 1. 环境准备 2. 创建事务 3. 事务执行 4. 事务撤消 5. 总结 事务是数据库区别于文件系统的重要特征之一,当我们有了事务就会让数据库始终保持一致,同时我们还能通过事务机制恢复到某个时间点,这样可以保证已提交到数据库的修改不会…...
Python数据分析-对驾驶安全数据进行了预测
一、研究背景和意义 随着汽车保有量的不断增加,交通事故已成为全球范围内的重大公共安全问题。每年因交通事故造成的人员伤亡和财产损失给社会带来了巨大的负担。为了提高驾驶安全,减少交通事故的发生,许多研究致力于探索影响驾驶安全的因素…...
全志 Android 11:实现响应全局按键
一、篇头 最近实现热键想功能,简单总结了下全志平台Android 11 的响应全局热键的方法。 二、需求 实现全局热键,响应F-、AF、F三个按键,AF只用于启动调焦界面,F-和F除了可以启动调焦界面外,还用于调整镜头的焦距&…...
DVWA 靶场 Open HTTP Redirect 通关解析
前言 DVWA代表Damn Vulnerable Web Application,是一个用于学习和练习Web应用程序漏洞的开源漏洞应用程序。它被设计成一个易于安装和配置的漏洞应用程序,旨在帮助安全专业人员和爱好者了解和熟悉不同类型的Web应用程序漏洞。 DVWA提供了一系列的漏洞场…...
Blender:渲染输出
一、渲染设置 渲染设置界面: 渲染器选择切换 Cycles渲染器 【文档】 Cycles渲染目标: Cycles是Blender用于产品级渲染,基于物理的路径跟踪器。主要关注于影视质量,更高质量的外观它旨在提供易于使用以及准确的物理渲染结果具有艺术…...
NTFS和exFAT哪个性能好 U盘格式化NTFS好还是exFAT好 mac不能读取移动硬盘怎么解决
文件系统的选择对存储设备的性能和兼容性有着重要影响。而NTFS和EXFAT作为两种常见的文件系统,它们各有特点,适用于不同的使用场景。我们将深入探讨NTFS和EXFAT的区别,帮助大家选择最适合自己需求的文件系统。 NTFS:稳定与性能的平…...
kafka的基本模型
kafka官网 线程和线程之间的数据交互 在jvm里不同的线程有自己的栈内存,但彼此之间交互可以在共享的内存中进行,即堆内存,堆内存会将这些消息放到队列中,具体实现jvm见,栈内存各自维护,堆内存大家共享 进…...
npm语义化版本和版本运算符
版本号组成 一个完整的版本号,由三部分组成:主版本号(major)、次版本号(minor)、修订版本号(patch),简称X.Y.Z,具体含义: 主版本号(major):项目(…...
孩子到了叛逆期,家长应该怎么教育孩子?
到了一定的年龄后,有些孩子会变得叛逆起来,那么对于家长来说,如何教育叛逆的孩子?孩子叛逆期教育方法有哪些呢? 叛逆期教育孩子用什么方法 一。要摒除父母对孩子居高临下的心态,放下身叚࿰…...
芋道源码 yudao-cloud 、Boot 文档,开发指南 看全部,破解[芋道快速开发平台 Boot + Cloud]
1、文档全部保存本地部署查看,真香 文档已抓取最新版本,2024.06.21。【唯一遗憾,表结构到2024.04月,已被限制放到知识星球】会员中心,支付中心,CRM,ERP,商城,公众号运行…...
工具函数-算法
1. 实现四舍五入,保留两位小数 const v 0.0635455; // 方式1,保留2位小数,返回的是number格式 const formatted Math.round(v * 100) / 100; // 方式2,保留2位小数,返回的是字符串格式 const formatted v.toFixed(…...
C# yolov8 OpenVINO 同步、异步接口视频推理
C# yolov8 OpenVINO 同步、异步接口视频推理 目录 效果 项目 代码 下载 效果 同步推理效果 异步推理效果 项目 代码 using OpenCvSharp; using System; using System.Collections.Generic; using System.Diagnostics; using System.Threading; using System.Windows.Form…...
【STM32入门学习】定时器与PWM的LED控制
目录 一、定时器与PWM介绍 1.1定时器 1.1.1定时器分类简介 1.1.2STM32定时器分类比较表 1.1.3定时器启动操作: 1.2 PWM 1.2.1 简介: 1.2.2PWM工作原理 1.2.3使用步骤: 二、定时器计数控制LED灯亮灭 2.1HAL库 2.1.1使用HAL库创建…...
PyTorch实战:模型训练中的特征图可视化技巧
1.特征图可视化,这种方法是最简单,输入一张照片,然后把网络中间某层的输出的特征图按通道作为图片进行可视化展示即可。 2.特征图可视化代码如下: def featuremap_visual(feature, out_dirNone, # 特征图保存路径文件save_feat…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
