当前位置: 首页 > news >正文

计算机专业是否仍是“万金油”

  作为一名即将参加高考的学生,我站在人生的分岔路口上,面临着选择大学专业的重大抉择。在这个关键节点,计算机相关专业是否仍是炙手可热的选择?

  首先,从行业的角度来看,计算机相关专业确实在近年来持续火爆。随着科技的发展,尤其是人工智能、大数据、云计算等领域的高速发展,计算机相关专业在就业市场上一直保持较高的需求。因此,这些专业成为了许多学生追求高薪就业的首选。

  然而,正如你所说,市场竞争的加剧和市场饱和度的提高可能会对计算机相关专业的发展前景产生影响。特别是在当前环境下,很多学生和家长对于计算机专业的热情已经开始降温,他们开始考虑更多的职业发展因素和行业前景。

  那么,计算机相关专业是否仍具有长远的发展潜力和就业前景呢?我认为,这主要取决于以下几个因素:

  首先,技术发展的趋势。随着人工智能、大数据、云计算等技术的不断发展和应用,计算机相关专业的前景仍然广阔。但是,这些技术的发展需要大量的专业人才来推动,因此,计算机相关专业的学生需要具备扎实的技术基础和持续学习的能力。

  其次,市场需求的变化。虽然目前计算机相关专业市场需求仍然旺盛,但是随着市场竞争的加剧和行业的发展,市场需求的变化也会影响计算机相关专业的发展前景。因此,选择计算机相关专业的学生需要具备敏锐的市场洞察力和良好的职业规划能力。

  最后,个人兴趣和职业规划。选择专业时,个人兴趣和职业规划是非常重要的因素。计算机相关专业虽然热门,但是并不是每个人都适合或者喜欢这个专业。因此,在选择专业时,需要结合自己的兴趣和职业规划进行选择。

  作为一名从业者,我认为计算机行业的未来发展态势将会继续保持高速增长。随着人工智能、大数据、云计算等技术的不断发展和应用,计算机行业将会持续保持高速增长。同时,随着行业的发展,对专业人才的需求也会越来越高,这也为计算机相关专业的学生提供了更多的发展机会。

  综上所述,选择计算机相关专业仍然是一个具有长远发展潜力和就业前景的选择。但是,在选择专业时,需要结合自己的兴趣、职业规划和技术发展趋势进行选择。同时,也需要具备扎实的技术基础和持续学习的能力,以应对不断变化的市场需求。

微信小程序:时光映迹-CSDN博客

相关文章:

计算机专业是否仍是“万金油”

作为一名即将参加高考的学生,我站在人生的分岔路口上,面临着选择大学专业的重大抉择。在这个关键节点,计算机相关专业是否仍是炙手可热的选择?  首先,从行业的角度来看,计算机相关专业确实在近年来持续火…...

雷池社区版自动SSL

正常安装雷池,并配置站点,暂时不配置ssl 不使用雷池自带的证书申请。 安装(acme.sh),使用域名验证方式生成证书 先安装git yum install git 或者 apt-get install git 安装完成后使用 git clone https://gitee.com/n…...

怎样减少徐州服务器租用的成本?

服务器租用的出现,十分便于网络行业的发展,但是随着服务器租用的广泛应用,整体还是有着一定的成本的吗,不同的服务器类型在价格方面也是不同的,那么企业在选择服务器租用后,怎样才能减少服务器租用的成本呢…...

【性能优化】表分桶实践最佳案例

分桶背景 随着企业的数据不断增长,数据的分布和访问模式变得越来越复杂。我们前面介绍了如何通过对表进行分区来提高查询效率,但对于某些特定的查询模式,特别是需要频繁地进行数据联接查或取样的场景,仍然可能面临性能瓶颈。此外…...

数据仓库的挑战

建设数据仓库是一个复杂且资源密集的过程,需要考虑多个方面。以下是建设数据仓库时常见的挑战及其详细解释: 1. 数据集成 挑战: 数据来源多样:数据来自不同的系统、数据库、文件格式(如CSV、JSON、XML)、…...

基于ResNet-18的简单分类(新手,而且网络效果不咋滴,就是学个流程)

引言 先看问题: 我手边有一数据集,然后我想分分类!~~ 咳咳,最近刚做了一个:训练集有1143张,分为5类,里面图片是打乱的。测试集有248张,想把它分分类看看咋样。 再看一下效果: …...

自动化测试:Autorunner的使用

自动化测试:Autorunner的使用 一、实验目的 1、掌握自动化测试脚本的概念。 2、初步掌握Autorunner的使用 二、Autorunner的简单使用 autoRunner使用方法 新建项目 a) 在项目管理器空白区域,右键鼠标,选择新建项目 b) 输入项目名后,点击[确定]. 在初次打开aut…...

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…...

软考 系统架构设计师系列知识点之杂项集萃(42)

接前一篇文章:软考 系统架构设计师系列知识点之杂项集萃(41) 第67题 Windows操作系统在图形界面处理方面采用的核心架构风格是( )风格。Java语言宣传的“一次编写,到处运行”的特性,从架构风格…...

FastBoot刷机获取root权限(Magisk)

1.首先要下载ADB、Fastboot等工具。 1.ADB、Fastboot工具 https://developer.android.com/studio/releases/platform-tools 2.安装FastBoot的USB驱动 https://developer.android.com/studio/run/oem-usb 2.下载对应的镜像 https://developers.google.com/android/images?…...

信息检索(43):SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking 摘要1 引言2 相关工作3 方法3.1 SparTerm3.2 SPLADE:稀疏词汇和扩展模型 4 实验5 结论 发布时间(2021) 标题:稀疏词汇 扩展模型 摘要 稀疏的优点&#xf…...

DockerHub 镜像加速

Docker Hub 作为目前全球最大的容器镜像仓库,为开发者提供了丰富的资源。Docker Hub 是目前最大的容器镜像社区,DokcerHub的不能使用,导致在docker下pull镜像无法下载,安装kubernetes镜像也受到影响,下面请看解决方式。 1.加速原理 Docker下载加速的原理…...

Oracle 迁移 Mysql

-- Oracle->MySQL -- 使用时改一下where条件的owner和table_name -- 字段数据类型映射时会将Oracle中的浮点NUMBER转换为decimal(65,8)定点数 -- 可以识别主键约束、非空约束,但无法识别外键约束、唯一约束、自定义check -- 对于Oracle字符串长度为4000的&#x…...

vue3父子组件通信

一&#xff0c;父传子——defineProps 方法&#xff1a; 在父组件的模板中使用子组件标签&#xff0c;并且给标签自定义属性和属性名&#xff0c;即通过v-bind绑定数值&#xff0c;而后传给子组件&#xff1b;子组件则通过defineProps接收使用。 父组件&#xff1a; <tem…...

CSS中使用应用在伪元素中的计数器属性counter-increment

在CSS中&#xff0c;counter-increment 是一个用于递增计数器值的属性。它通常与 counter-reset 和 content 属性一起使用&#xff0c;以在文档中的特定位置&#xff08;如列表项、标题等&#xff09;插入自动生成的数字或符号。 counter-increment 基本用法&#xff1a; 使…...

【SkiaSharp绘图08】SKPaint方法:自动换行、是否乱码、字符偏移、边界、截距、文本轮廓、测量文本

文章目录 SKPaint方法BreakText 计算指定宽度内可绘制的字符个数ContainsGlyphs字体是否包含文本字符(是否会乱码)GetGlyphOffsets 字符偏移量GetGlyphPositions 偏移坐标GetGlyphWidths 每个字符的宽度与边界GetHorizontalTextIntercepts 轮廓截距GetPositionedTextIntercepts…...

深入理解Servlet Filter及其限流实践

引言 在Java Servlet技术中&#xff0c;Filter是一个拦截器&#xff0c;它允许开发者在请求到达目标资源之前或响应发送给客户端之后&#xff0c;对请求或响应进行拦截和处理。这种机制为实现诸如身份验证、日志记录、请求修改等功能提供了极大的灵活性。 Filter基础 Filter…...

使用cv2对视频指定区域进行去噪

视频去噪其实和图象一样&#xff0c;只是需要现将视频截成图片&#xff0c;在对图片进行去噪&#xff0c;将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。 去噪步骤 1、视频逐帧读成图片 2、图片指定区域批量去噪 2、去噪后的图片写入视频 1、视频逐…...

AI在创造还是毁掉音乐?

AI对音乐产业的影响是复杂而多维的&#xff0c;既有创造性的贡献也存在潜在的挑战。我们可以从以下几个角度来分析这个问题&#xff1a; ### 创造性贡献 1. **音乐创作**&#xff1a;AI可以帮助音乐家创作新的旋律和和声&#xff0c;甚至生成完整的音乐作品。例如&#xff0c…...

【2023年全国青少年信息素养大赛智能算法挑战赛复赛真题卷】

目录 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 2023全国⻘少年信息素养⼤赛智能算法挑战复赛⼩学组真题 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 1. 修复机器人的对话词库错误 【题目描述】 基于人工智能技术的智能陪伴机器人的语言词库被…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

Java中HashMap底层原理深度解析:从数据结构到红黑树优化

一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一&#xff0c;是基于哈希表的Map接口非同步实现。它允许使用null键和null值&#xff08;但只能有一个null键&#xff09;&#xff0c;并且不保证映射顺序的恒久不变。与Hashtable相比&#xff0c;Hash…...