使用cv2对视频指定区域进行去噪
视频去噪其实和图象一样,只是需要现将视频截成图片,在对图片进行去噪,将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。
去噪步骤
1、视频逐帧读成图片
2、图片指定区域批量去噪
2、去噪后的图片写入视频
1、视频逐帧读成图片
有两种方法,第一种是直接将图片读入内存,图片就是以numpy格式存在内存中,优点是可以极快的增加图片的读取速度,但过长的视频可能会导致内存爆满。第二种是逐帧将图片读到本地文件夹,以png的格式存到指定路径中,优点是不占用内存,但是由于加入了cv2.imwrite(),会耗费一定的时间。由于我这次不在服务器上跑,所以选择第二种方法。
def make_frame_img(video_path, output_path):"""从视频文件中抽取帧数图片,保存到指定路径参数:video_path: 输入视频路径output_path: 保存帧图片文件夹return 无"""# 读取视频文件cap = cv2.VideoCapture(video_path)# 检查视频是否成功打开if not cap.isOpened():print("无法打开视频文件:", video_path)return# 获取视频帧率和总帧数fps = cap.get(cv2.CAP_PROP_FPS)total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))# 如果没有创建输出文件夹,则创建输出文件夹if not os.path.exists(output_path):os.makedirs(output_path)# 分割视频为照片print("beginning to extract frames from video !")for i in tqdm(range(total_frames)):ret, frame = cap.read()if ret:# 保存照片filename = f'./frame_%04d.png' % ifilepath = os.path.join(output_path, filename)cv2.imwrite(filepath, frame)else:break
2、图片指定区域批量去噪
可以参考我写的上篇博客,图象去噪。但是上篇博客只是对单个图片全图去噪,这次我们需要的是对一个文件夹里的图片指定区域进行批量去噪。
2.1、图象指定区域去噪
本次的任务是对图象下半部分进行中值滤波,故只需将原图裁剪一般得到下张图,对下半张图进行滤波后,与未滤波的上半张图像进行拼接,可使用纵向堆叠的np.vstack()实现图象上下拼接。
def mid_move_noise(noise_image): # 对图像下半部分进行中值去噪image = cv2.imread(noise_image)h, w = image.shape[:2]half_height = h // 2bottom_half = image[half_height:, :]bottom_half = cv2.medianBlur(bottom_half, 9)image = np.vstack((image[:half_height, :], bottom_half))return image
2.2、写一个for 循环遍历文件夹中的图片进行图像指定区域去噪,将去噪后的图片写入到指定文件夹下。
def from_fold_process_images(source_folder, result_folder):print("image process from folder: " + source_folder)for img_name in tqdm(os.listdir(source_folder)):img_path = os.path.join(source_folder, img_name)if img_name.endswith('.png'):# 构建输出图片的路径output_path = os.path.join(result_folder, img_name)# 应用中值滤波并保存img = mid_move_noise(img_path)cv2.imwrite(output_path, img)
3、去噪图片写入成视频
def merge_to_video(img_path, output_video_path):print("image merge to video")"""将图片合成视频参数:img_path 输入图片路径output_video_path 输出视频路径return 无"""# 传入输入路径中的所有图像image_files = [f for f in os.listdir(img_path) if f.endswith(".png")]image_files.sort()# 获取图像尺寸img = cv2.imread(os.path.join(img_path, image_files[0]))height, width, _ = img.shape# 创建用于写入视频的VideoWriter对象video_writer = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*"mp4v"), 30, (width, height))# 逐个读取图像并将其写入视频for image_file in tqdm(image_files):img = cv2.imread(os.path.join(img_path, image_file))video_writer.write(img)print("Video has been created successfully!")video_writer.release()
测试代码:
make_frame_img('./noise.mp4', './video_fps')
from_fold_process_images('./video_fps', './move_noise_fps')
merge_to_video('./move_noise_fps', './denoise.mp4')
相关文章:
使用cv2对视频指定区域进行去噪
视频去噪其实和图象一样,只是需要现将视频截成图片,在对图片进行去噪,将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。 去噪步骤 1、视频逐帧读成图片 2、图片指定区域批量去噪 2、去噪后的图片写入视频 1、视频逐…...
AI在创造还是毁掉音乐?
AI对音乐产业的影响是复杂而多维的,既有创造性的贡献也存在潜在的挑战。我们可以从以下几个角度来分析这个问题: ### 创造性贡献 1. **音乐创作**:AI可以帮助音乐家创作新的旋律和和声,甚至生成完整的音乐作品。例如,…...
【2023年全国青少年信息素养大赛智能算法挑战赛复赛真题卷】
目录 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 2023全国⻘少年信息素养⼤赛智能算法挑战复赛⼩学组真题 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 1. 修复机器人的对话词库错误 【题目描述】 基于人工智能技术的智能陪伴机器人的语言词库被…...

Android系统揭秘(一)-Activity启动流程(上)
public ActivityResult execStartActivity( Context who, IBinder contextThread, IBinder token, Activity target, Intent intent, int requestCode, Bundle options) { IApplicationThread whoThread (IApplicationThread) contextThread; … try { … int result …...
使用Java实现哈夫曼编码
前言 哈夫曼编码是一种经典的无损数据压缩算法,它通过赋予出现频率较高的字符较短的编码,出现频率较低的字符较长的编码,从而实现压缩效果。这篇博客将详细讲解如何使用Java实现哈夫曼编码,包括哈夫曼编码的原理、具体实现步骤以…...

IDEA、PyCharm等基于IntelliJ平台的IDE汉化方式
PyCharm 或者 IDEA 等编辑器是比较常用的,默认是英文界面,有些同学用着不方便,想要汉化版本的,但官方没有这个设置项,不过可以通过插件的方式进行设置。 方式1:插件安装 1、打开设置 File->Settings&a…...

visual studio 创建c++项目
目录 环境准备:安装 visual studiovisual studio 创建c项目Tips:新建cpp文件注释与取消注释代码 其他初学者使用Visual Studio开发C和C时常遇到的3个坑 环境准备:安装 visual studio 官网:https://visualstudio.microsoft.com/zh…...

MGV电源维修KUKA机器人电源模块PH2003-4840
MGV电源维修 库卡电源模块维修 机器人电源模块维修 库卡控制器维修 KUKA电源维修 库卡机器人KUKA主机维修 KUKA驱动器模块维修 机械行业维修:西门子系统、法那克系统、沙迪克、FIDIA、天田、阿玛达、友嘉、大宇系统;数控冲床、剪板机、折弯机等品牌数控…...

设置浏览器互不干扰
目录 一、查看浏览器文件路径 二、 其他盘新建文件夹Cache 三、以管理员运行CMD 四、执行命令 一、查看浏览器文件路径 chrome://version/ 二、 其他盘新建文件夹Cache D:\chrome\Cache 三、以管理员运行CMD 四、执行命令 Mklink /d "C:\Users\Lenovo\AppData\Loca…...
kafka操作命令详解
目录 1、集群运维命令 1.1、集群启停命令 1.3、集群迁移命令 1.4、权限管理命令 1.4.1、权限参数介绍 1.4.2、增加权限命令 1.4.3、移出权限命令 1.4.4、查看所有topic权限命令 1.4.5、查看某个topic权限命令 2、生产者命令 2.1、创建topic命令 2.2、删除topic命令 …...

graalvm jdk和openjdk
下载地址:https://github.com/graalvm/graalvm-ce-builds/releases 官网: https://www.graalvm.org...

docker基础使用教程
1.准备工作 例子:工程在docker_test 生成requirements.txt文件命令:(使用参考链接2) pip list --formatfreeze > requirements.txt 参考链接1: 安装pipreqs可能比较困难 python 项目自动生成环境配置文件require…...

计算机网络 交换机的安全配置
一、理论知识 1.交换机端口安全功能介绍 交换机端口安全功能是针对交换机端口进行安全属性的配置,以控制用户的安全接入。主要包括以下两种配置项: ①限制交换机端口的最大连接数:控制交换机端口连接的主机数量;防止用户进行恶…...
深入解析大语言模型系列:Transformer架构的原理与应用
引言 在自然语言处理(NLP)领域,大语言模型(Large Language Models, LLMs)近几年取得了突破性的进展,而 Transformer 作为这些模型的核心架构,功不可没。本文将详细介绍 Transformer 的原理、结…...
uni-app地图组件控制
uni.createMapContext(mapId,this) 创建并返回 map 上下文 mapContext 对象。在自定义组件下,第二个参数传入组件实例this,以操作组件内 <map> 组件。 注意:uni.createMapContext(mapId, this) app-nvue 平台 2.2.5 支持 uni.create…...
前端调用api发请求常用的请求头content- type的类型和常用场景
Content-Type 是一个非常重要的HTTP头,它定义了发送给服务器或客户端的数据的MIME类型。这对于服务器和客户端正确解析和处理数据至关重要。下面是一些常见的 Content-Type 值及其用途和区别。 常见的 Content-Type 值 text/plain • 用途: 纯文本,无格…...
数据仓库之SparkSQL
Apache Spark SQL是Spark中的一个组件,专门用于结构化数据处理。它提供了通过SQL和DataFrame API来执行结构化数据查询的功能。以下是对Spark SQL的详细介绍: 核心概念 DataFrame: 定义: DataFrame是一个分布式数据集合,类似于关系型数据库中…...
如何在 MySQL 中导入和导出数据库以及重置 root 密码
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 如何导入和导出数据库 导出 要导出数据库,打开终端,确保你没有登录到 MySQL 中,然后输入以下命令&…...

基于uni-app和图鸟UI的云课堂小程序开发实践
摘要: 随着移动互联网的快速发展,移动学习已成为教育领域的重要趋势。本文介绍了基于uni-app和图鸟UI框架开发的云课堂小程序,该小程序实现了移动教学、移动学习、移动阅读和移动社交的完美结合,为用户提供了一个便捷、高效的学习…...
解决python从TD数据库取50w以上大量数据慢的问题
1.问题背景描述 python项目中的时序数据都存放在TD数据库中,数据是秒级存入的,当查询一周数据时将超过50w数据量,这是一次性获取全量数据到python程序很慢,全流程10秒以上,希望进行优化加速 2.排查 首先,…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...