当前位置: 首页 > news >正文

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测;
2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据;
3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;
注:程序和数据放在一个文件夹。
4.程序语言为matlab,程序可出预测效果图,指标图;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

Attention(注意力机制):注意力机制用于加强模型对序列中不同位置的重要性的关注。通过计算每个时间步的注意力权重,模型可以自动学习并关注序列中最相关的部分。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')bilstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(n_out,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 150, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…...

软考 系统架构设计师系列知识点之杂项集萃(42)

接前一篇文章:软考 系统架构设计师系列知识点之杂项集萃(41) 第67题 Windows操作系统在图形界面处理方面采用的核心架构风格是( )风格。Java语言宣传的“一次编写,到处运行”的特性,从架构风格…...

FastBoot刷机获取root权限(Magisk)

1.首先要下载ADB、Fastboot等工具。 1.ADB、Fastboot工具 https://developer.android.com/studio/releases/platform-tools 2.安装FastBoot的USB驱动 https://developer.android.com/studio/run/oem-usb 2.下载对应的镜像 https://developers.google.com/android/images?…...

信息检索(43):SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking 摘要1 引言2 相关工作3 方法3.1 SparTerm3.2 SPLADE:稀疏词汇和扩展模型 4 实验5 结论 发布时间(2021) 标题:稀疏词汇 扩展模型 摘要 稀疏的优点&#xf…...

DockerHub 镜像加速

Docker Hub 作为目前全球最大的容器镜像仓库,为开发者提供了丰富的资源。Docker Hub 是目前最大的容器镜像社区,DokcerHub的不能使用,导致在docker下pull镜像无法下载,安装kubernetes镜像也受到影响,下面请看解决方式。 1.加速原理 Docker下载加速的原理…...

Oracle 迁移 Mysql

-- Oracle->MySQL -- 使用时改一下where条件的owner和table_name -- 字段数据类型映射时会将Oracle中的浮点NUMBER转换为decimal(65,8)定点数 -- 可以识别主键约束、非空约束,但无法识别外键约束、唯一约束、自定义check -- 对于Oracle字符串长度为4000的&#x…...

vue3父子组件通信

一&#xff0c;父传子——defineProps 方法&#xff1a; 在父组件的模板中使用子组件标签&#xff0c;并且给标签自定义属性和属性名&#xff0c;即通过v-bind绑定数值&#xff0c;而后传给子组件&#xff1b;子组件则通过defineProps接收使用。 父组件&#xff1a; <tem…...

CSS中使用应用在伪元素中的计数器属性counter-increment

在CSS中&#xff0c;counter-increment 是一个用于递增计数器值的属性。它通常与 counter-reset 和 content 属性一起使用&#xff0c;以在文档中的特定位置&#xff08;如列表项、标题等&#xff09;插入自动生成的数字或符号。 counter-increment 基本用法&#xff1a; 使…...

【SkiaSharp绘图08】SKPaint方法:自动换行、是否乱码、字符偏移、边界、截距、文本轮廓、测量文本

文章目录 SKPaint方法BreakText 计算指定宽度内可绘制的字符个数ContainsGlyphs字体是否包含文本字符(是否会乱码)GetGlyphOffsets 字符偏移量GetGlyphPositions 偏移坐标GetGlyphWidths 每个字符的宽度与边界GetHorizontalTextIntercepts 轮廓截距GetPositionedTextIntercepts…...

深入理解Servlet Filter及其限流实践

引言 在Java Servlet技术中&#xff0c;Filter是一个拦截器&#xff0c;它允许开发者在请求到达目标资源之前或响应发送给客户端之后&#xff0c;对请求或响应进行拦截和处理。这种机制为实现诸如身份验证、日志记录、请求修改等功能提供了极大的灵活性。 Filter基础 Filter…...

使用cv2对视频指定区域进行去噪

视频去噪其实和图象一样&#xff0c;只是需要现将视频截成图片&#xff0c;在对图片进行去噪&#xff0c;将去噪的图片在合成视频就行。可以利用cv2.imread()、imwrite()等轻松实现。 去噪步骤 1、视频逐帧读成图片 2、图片指定区域批量去噪 2、去噪后的图片写入视频 1、视频逐…...

AI在创造还是毁掉音乐?

AI对音乐产业的影响是复杂而多维的&#xff0c;既有创造性的贡献也存在潜在的挑战。我们可以从以下几个角度来分析这个问题&#xff1a; ### 创造性贡献 1. **音乐创作**&#xff1a;AI可以帮助音乐家创作新的旋律和和声&#xff0c;甚至生成完整的音乐作品。例如&#xff0c…...

【2023年全国青少年信息素养大赛智能算法挑战赛复赛真题卷】

目录 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 2023全国⻘少年信息素养⼤赛智能算法挑战复赛⼩学组真题 2023全国青少年信息素养大赛智能算法挑战赛初中组复赛真题 1. 修复机器人的对话词库错误 【题目描述】 基于人工智能技术的智能陪伴机器人的语言词库被…...

Android系统揭秘(一)-Activity启动流程(上)

public ActivityResult execStartActivity( Context who, IBinder contextThread, IBinder token, Activity target, Intent intent, int requestCode, Bundle options) { IApplicationThread whoThread (IApplicationThread) contextThread; … try { … int result …...

使用Java实现哈夫曼编码

前言 哈夫曼编码是一种经典的无损数据压缩算法&#xff0c;它通过赋予出现频率较高的字符较短的编码&#xff0c;出现频率较低的字符较长的编码&#xff0c;从而实现压缩效果。这篇博客将详细讲解如何使用Java实现哈夫曼编码&#xff0c;包括哈夫曼编码的原理、具体实现步骤以…...

IDEA、PyCharm等基于IntelliJ平台的IDE汉化方式

PyCharm 或者 IDEA 等编辑器是比较常用的&#xff0c;默认是英文界面&#xff0c;有些同学用着不方便&#xff0c;想要汉化版本的&#xff0c;但官方没有这个设置项&#xff0c;不过可以通过插件的方式进行设置。 方式1&#xff1a;插件安装 1、打开设置 File->Settings&a…...

visual studio 创建c++项目

目录 环境准备&#xff1a;安装 visual studiovisual studio 创建c项目Tips&#xff1a;新建cpp文件注释与取消注释代码 其他初学者使用Visual Studio开发C和C时常遇到的3个坑 环境准备&#xff1a;安装 visual studio 官网&#xff1a;https://visualstudio.microsoft.com/zh…...

MGV电源维修KUKA机器人电源模块PH2003-4840

MGV电源维修 库卡电源模块维修 机器人电源模块维修 库卡控制器维修 KUKA电源维修 库卡机器人KUKA主机维修 KUKA驱动器模块维修 机械行业维修&#xff1a;西门子系统、法那克系统、沙迪克、FIDIA、天田、阿玛达、友嘉、大宇系统&#xff1b;数控冲床、剪板机、折弯机等品牌数控…...

设置浏览器互不干扰

目录 一、查看浏览器文件路径 二、 其他盘新建文件夹Cache 三、以管理员运行CMD 四、执行命令 一、查看浏览器文件路径 chrome://version/ 二、 其他盘新建文件夹Cache D:\chrome\Cache 三、以管理员运行CMD 四、执行命令 Mklink /d "C:\Users\Lenovo\AppData\Loca…...

kafka操作命令详解

目录 1、集群运维命令 1.1、集群启停命令 1.3、集群迁移命令 1.4、权限管理命令 1.4.1、权限参数介绍 1.4.2、增加权限命令 1.4.3、移出权限命令 1.4.4、查看所有topic权限命令 1.4.5、查看某个topic权限命令 2、生产者命令 2.1、创建topic命令 2.2、删除topic命令 …...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...