当前位置: 首页 > news >正文

Elastic字段映射(_source,doc_value,fileddata,index,store)

Elastic字段映射(_source,doc_value,filed_data,index,store)

_source:

source 字段用于存储 post 到 ES 的原始 json 文档。为什么要存储原始文档呢?因为 ES 采用倒排索引对文本进行搜索,而倒排索引无法存储原始输入文本。一段文本交给ES后,首先会被分析器(analyzer)打散成单词,为了保证搜索的准确性,在打散的过程中,会去除文本中的标点符号,统一文本的大小写,甚至对于英文等主流语言,会把发生形式变化的单词恢复成原型或词根,然后再根据统一规整之后的单词建立倒排索引,经过如此一番处理,原文已经面目全非。因此需要有一个地方来存储原始的信息,以便在搜到这个文档时能够把原文返回给查询者。

相对于store,它只要建立一个文档索引,当需要对多个字段进行查询的时候,只需要一次io。

那么一定要存储原始文档吗?不一定!如果没有取出整个原始 json 结构体的需求,可以在 mapping 中关闭 source 字段或者只在 source 中存储部分字段(使用store),关闭后能减少内存和数据大小,提高性能。 但是这样做有些负面影响:

  • (1)不能获取到原文
  • (2)无法reindex:如果存储了 source,当 index 发生损坏,或需要改变 mapping 结构时,由于存在原始数据,ES可以通过原始数据自动重建index,如果不存 source 则无法实现
  • (3)无法在查询中使用script:因为 script 需要访问 source 中的字段
  • 文档需要使用update或者update_by_query更新
  • 文档高亮(有store也可以)

可以通过在查询的时候进行过滤

//查询
GET index/_search
{"_source": ["field"],"query" : {"match_all": {}}
}
//设置
{
"settings" : {"mappings" : {"_source": {"enable": true,"excludes": [],"includes": []}}}
}

doc_value

DocValue其实是Lucene在构建倒排索引时,会额外建立一个有序的正排索引(基于document => field value的映射列表)。
它是一个列式存储。不能用在text类型的字段。
因为倒排索引不能进行排序和聚合,因此如果字段需要这两个功能就可以开启它。
缺点:有额外的磁盘消耗

//查询
GET index/_search
{"doc_value": ["field"],"query" : {"match_all": {}}
}
//设置
{
"settings" : {"mappings" : {"properties": {"content": {"doc_value": true // 默认开启},}}}
}

fielddata

fielddata 也是用来进行聚合操作的,但是他是针对text的,算是对doc_value的一个补充。
fielddata 不是临时缓存。它是驻留内存里的数据结构,必须可以快速执行访问,而且构建它的代价十分高昂。如果每个请求都重载数据,性能会十分糟糕

在使用这个的过程中 ,应该好好思考两个问题“:

  • 为什么要对text类型的字段进行聚合操作
  • 如果你真想对这个字段进行聚合,为什么不将他设置为keyword类型,使用doc_value

index

Index:定义字段分词以及创建索引(只有建立索引,才能被检索)。缺点:会额外维护一个索引库
关闭后,字段不建立索引,不被检索,无法通过检索查询到该字段。反过来,有些业务要求某些字段不能被搜索,那么index属性设置为false即可。

store

store开启后
ES会对该字段单独存储倒排索引,每次根据ID检索的时候,会多走一次IO来从倒排索引取数据,以便于快速检索。

注意:如果想要对某个字段实现高亮功能,_source和store至少保留一个。

一般来说_source和store 只要开启一个就行。因为如果_source存在的话,他可以直接在_source检索出来。

store默认是关闭的,它开启的字段越多,索引库就越大,维护的成本就越高,检索的效率也就会会越差、

相关文章:

Elastic字段映射(_source,doc_value,fileddata,index,store)

Elastic字段映射(_source,doc_value,filed_data,index,store) _source: source 字段用于存储 post 到 ES 的原始 json 文档。为什么要存储原始文档呢?因为 ES 采用倒排索引对文本进行搜索,而倒排索引无法存储原始输入…...

kotlin空类型安全 !! ?. ?:

1、定义可空类型 fun main(){// 定义可空类型var x:String? "hello"x null } 2、!! 强转类型 定义可空类型之后,如果使用其内置方法,编译不会通过,因为值有可能为null,可以使用 !! 把类型强转为不可空&#xff1a…...

通过 WireGuard 组建虚拟局域网 实现多个局域网全互联

本文后半部分代码框较多,欢迎点击原文链接获得更佳的阅读体验。 前言 上一篇关于 WireGuard 的文章通过 Docker 安装 wg-easy 的形式来使用 WireGuard,但 wg-easy 的功能比较有限,并不能发挥出 WireGuard 的全部功力。 如果只是想要出门在外连随时随地的连回家里的局域网,…...

qmt量化交易策略小白学习笔记第47期【qmt编程之期货仓单】

qmt编程之获取期货数据 qmt更加详细的教程方法,会持续慢慢梳理。 也可找寻博主的历史文章,搜索关键词查看解决方案 ! 感谢关注,咨询免费开通量化回测与获取实盘权限,欢迎和博主联系! 期货仓单 提示 1…...

点云处理中阶 Sampling

目录 一、什么是点云Sampling 二、示例代码 1、下采样 Downsampling 2、均匀采样 3、上采样 4、表面重建 一、什么是点云Sampling 点云处理中的采样(sampling)是指从大量点云数据中选取一部分代表性的数据点,以减少计算复杂度和内存使用,同时保留点云的几何特征和重…...

为什么print语句被Python3遗弃?

在开发和维护python项目的时候发现经常有print语句报错,原因是python3放弃了print语句 print 语句 早就被列在了不可靠的语言特性列表中,例如 Guido 的“Python 之悔”(Python Regrets)演讲【1】,并计划在 Python 300…...

067、Python 高阶函数的编写:优质冒泡排序

以下写了个简单的冒泡排序函数: def bubble_sort(items: list) -> list:for i in range(1, len(items)):swapped Falsefor j in range(0, len(items) - 1):if items[j] > items[j 1]:items[j], items[j 1] items[j 1], items[j]swapped Trueif not swa…...

【Python】从基础到进阶(一):了解Python语言基础以及变量的相关知识

🔥 个人主页:空白诗 文章目录 引言一、Python简介1.1 历史背景1.2 设计哲学1.3 语言特性1.4 应用场景1.5 为什么选择Python 二、Python语言基础2.1 注释规则2.1.1 单行注释2.1.2 多行注释2.1.3 文件编码声明注释 2.2 代码缩进2.3 编码规范2.3.1 命名规范…...

AI学习指南机器学习篇-KNN的优缺点

AI学习指南机器学习篇-KNN的优缺点 在机器学习领域中,K最近邻(K-Nearest Neighbors,KNN)算法是一种十分常见的分类和回归方法之一。它的原理简单易懂,但在实际应用中也存在一些优缺点。本文将重点探讨KNN算法的优缺点…...

全网最全!25届最近5年上海理工大学自动化考研院校分析

上海理工大学 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、历年真题PDF 七、初试大纲复试大纲 八、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指定教材 1、考试…...

LANG、LC_MESSAGES和LC_ALL

在Linux系统中,环境变量LANG、LC_MESSAGES和LC_ALL用于控制系统和应用程序的语言和区域设置(locale)。它们的具体作用如下: LANG: LANG是最基本的环境变量,用于指定系统的默认语言和区域设置。它是一个全局…...

生成式AI和LLM的一些基本概念和名词解释

1. Machine Learning 机器学习是人工智能(AI)的一个分支,旨在通过算法和统计模型,使计算机系统能够从数据中学习并自动改进。机器学习算法使用数据来构建模型,该模型可用于预测或决策。机器学习应用于各种领域&#x…...

python项目(课设)——飞机大战小游戏项目源码(pygame)

主程序 import pygame from plane_sprites import * class PlaneGame: """ 游戏类 """ def __init__(self): print("游戏初始化") # 初始化字体模块 pygame.font.init() # 创建游戏…...

Chatgpt教我打游戏攻略

宝可梦朱 我在玩宝可梦朱的时候,我的同行队伍里有黏美儿,等级为65,遇到了下雨天但是没有进化,为什么呢? 黏美儿(Goomy)要进化为黏美龙(Goodra),需要满足以下…...

最全信息收集工具集

吉祥学安全知识星球🔗除了包含技术干货:Java代码审计、web安全、应急响应等,还包含了安全中常见的售前护网案例、售前方案、ppt等,同时也有面向学生的网络安全面试、护网面试等。 所有的攻防、渗透第一步肯定是信息收集了&#xf…...

redis类型解析汇总

redis类型解析汇总 介绍数据类型简介主要数据类型:衍生类型: 字符串(String)底层设计原理图例设计优势字符串使用方法设置字符串值获取字符串值获取和设置部分字符串获取字符串长度追加字符串设置新值并返回旧值递增/递减同时设置…...

Unity3d自定义TCP消息替代UNet实现网络连接

以前使用UNet实现网络连接,Unity2018以后被弃用了。要将以前的老程序升到高版本,最开始打算使用Mirro,结果发现并不好用。那就只能自己写连接了。 1.TCP消息结构 (1). TCP消息是按流传输的,会发生粘包。那么在发射和接收消息时就需要对消息进行打包和解包。如果接收的消息…...

git fetch 和 git pull区别

git branch //查看本地所有分支 git branch -r //查看远程所有分支 git branch -a //查看本地和远程的所有分支 git branch <branchname> //新建分支 git branch -d <branchname> //删除本地分支 git branch -d -r <branchname> //删除远程分支&#x…...

冲击2024年CSDN博客之星TOP1:CSDN文章质量分查询在哪里?

文章目录 一&#xff0c;2023年博客之星规则1&#xff0c;不高的入围门槛2&#xff0c;[CSDN博文质量分测评地址](https://www.csdn.net/qc) 二&#xff0c;高分秘籍1&#xff0c;要有目录2&#xff0c;文章长度要足够&#xff0c;我的经验是汉字加代码至少1000字。3&#xff0…...

高性能并行计算华为云实验一:MPI矩阵运算

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建矩阵乘法源码 3.1.1 实验说明 3.1.2 实验步骤 3.2 创建卷积和池化操作源码 3.2.1 实验说明 3.2.2 实验步骤 3.3 创建Makefile文件并完成编译 3.4 建立主机配置文件与运行监测 四、实验结果与分析 4.1 矩阵乘法…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...