当前位置: 首页 > news >正文

067、Python 高阶函数的编写:优质冒泡排序

以下写了个简单的冒泡排序函数:

def bubble_sort(items: list) -> list:for i in range(1, len(items)):swapped = Falsefor j in range(0, len(items) - 1):if items[j] > items[j + 1]:items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakif __name__ == '__main__':nums = [55, 66, 9, 22, 86, 35, 44, 97, 56]bubble_sort(nums)print(nums)  # 输出结果:[9, 22, 35, 44, 55, 56, 66, 86, 97]

上面写法虽然正确排好序了,但初始化变量nums的结果改变了,如果实际应用不需要把初始变量改变,该如何?

优化后:

def bubble_sort(items: list) -> list:items = items[:]  # 把列表数据赋给一个新变量并作为返回值for i in range(1, len(items)):swapped = Falsefor j in range(0, len(items) - 1):if items[j] > items[j + 1]:items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakreturn itemsif __name__ == '__main__':nums = [55, 66, 9, 22, 86, 35, 44, 97, 56]print(bubble_sort(nums))  # 输出结果:[9, 22, 35, 44, 55, 56, 66, 86, 97]print(nums)  # 输出结果:[55, 66, 9, 22, 86, 35, 44, 97, 56]  原来值并没有改变

如此修改后初始化变量就可以保留,又可以输出排好序的数据了。

这点是基于以下编程思想:

在我们设计函数的时候,一定要注意函数的无副作用(调用函数不影响调用者)。优化后函数质量提升了。

但是该函数的功能还不够全面,假如我对于排序输出结果既要按升序输出,也要按降调输出,又该如何?

方法就是增加一个布尔值变量:

def bubble_sort(items: list, ascending=True) -> list:  # 增加一个bool变量items = items[:]  # 把列表数据赋给一个新变量并作为返回值for i in range(1, len(items)):swapped = Falsefor j in range(0, len(items) - 1):if items[j] > items[j + 1]:items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakif not ascending:items = items[::-1]return itemsif __name__ == '__main__':nums = [55, 66, 9, 22, 86, 35, 44, 97, 56]print(bubble_sort(nums))  # 输出结果:[9, 22, 35, 44, 55, 56, 66, 86, 97]print(bubble_sort(nums, ascending=False))  # 输出结果:[97, 86, 66, 56, 55, 44, 35, 22, 9]

如此,我们就可以通过变量ascending的值来判断按升序还是降序输出结果。

但是优化后的函数还不够好,因为在if items[j] > items[j + 1]:语句存在一定的耦合性。那么又该如何解耦呢?

方法就通过引入函数变量:

def bubble_sort(items: list, ascending: bool = True, gt=lambda x, y: x > y) -> list:  # 增加一个bool变量,并引入一个Lambda函数items = items[:]  # 把列表数据赋给一个新变量并作为返回值for i in range(1, len(items)):swapped = Falsefor j in range(0, len(items) - 1):if gt(items[j], items[j + 1]):  # 通过调用函数做大小比较items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakif not ascending:items = items[::-1]return itemsif __name__ == '__main__':nums = [55, 66, 9, 22, 86, 35, 44, 97, 56]print(bubble_sort(nums))  # 输出结果:[9, 22, 35, 44, 55, 56, 66, 86, 97]print(bubble_sort(nums, ascending=False))  # 输出结果:[97, 86, 66, 56, 55, 44, 35, 22, 9]

如此优化后,该函数质量就很高了,功能更全面,灵活性更高。

为什么这么说,看以下应用:


def bubble_sort(items: list, ascending: bool = True, gt=lambda x, y: x > y) -> list:  # 增加一个bool变量,并引入一个Lambda函数"""冒泡排序:param items: 待排序的列表:param ascending:是否使用升序:param gt: 比较两个元素大小的函数:return: 返回排序后列表"""items = items[:]  # 把列表数据赋给一个新变量并作为返回值for i in range(1, len(items)):swapped = Falsefor j in range(0, len(items) - 1):if gt(items[j], items[j + 1]):  # 通过调用函数做大小比较items[j], items[j + 1] = items[j + 1], items[j]swapped = Trueif not swapped:breakif not ascending:items = items[::-1]return itemsif __name__ == '__main__':nums = [55, 66, 9, 22, 86, 35, 44, 97, 56]print(bubble_sort(nums))  # 输出结果:[9, 22, 35, 44, 55, 56, 66, 86, 97]print(bubble_sort(nums, ascending=False))  # 输出结果:[97, 86, 66, 56, 55, 44, 35, 22, 9]words = ['Apple', 'Banana', 'Orange', 'Strawberry', 'Grape', 'Watermelon']print(bubble_sort(words, gt=lambda x, y: len(x) > len(y), ascending=False))# 输出结果 ['Watermelon', 'Strawberry', 'Orange', 'Banana', 'Grape', 'Apple']

如上,当一个列表数字是字符串,我需要把输出结果按字符串长度进行排序输出,那么只需要在调用函数的时候,修改函数变量的函数就可以实现了。

这就是高阶函数!

相关文章:

067、Python 高阶函数的编写:优质冒泡排序

以下写了个简单的冒泡排序函数: def bubble_sort(items: list) -> list:for i in range(1, len(items)):swapped Falsefor j in range(0, len(items) - 1):if items[j] > items[j 1]:items[j], items[j 1] items[j 1], items[j]swapped Trueif not swa…...

【Python】从基础到进阶(一):了解Python语言基础以及变量的相关知识

🔥 个人主页:空白诗 文章目录 引言一、Python简介1.1 历史背景1.2 设计哲学1.3 语言特性1.4 应用场景1.5 为什么选择Python 二、Python语言基础2.1 注释规则2.1.1 单行注释2.1.2 多行注释2.1.3 文件编码声明注释 2.2 代码缩进2.3 编码规范2.3.1 命名规范…...

AI学习指南机器学习篇-KNN的优缺点

AI学习指南机器学习篇-KNN的优缺点 在机器学习领域中,K最近邻(K-Nearest Neighbors,KNN)算法是一种十分常见的分类和回归方法之一。它的原理简单易懂,但在实际应用中也存在一些优缺点。本文将重点探讨KNN算法的优缺点…...

全网最全!25届最近5年上海理工大学自动化考研院校分析

上海理工大学 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、历年真题PDF 七、初试大纲复试大纲 八、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指定教材 1、考试…...

LANG、LC_MESSAGES和LC_ALL

在Linux系统中,环境变量LANG、LC_MESSAGES和LC_ALL用于控制系统和应用程序的语言和区域设置(locale)。它们的具体作用如下: LANG: LANG是最基本的环境变量,用于指定系统的默认语言和区域设置。它是一个全局…...

生成式AI和LLM的一些基本概念和名词解释

1. Machine Learning 机器学习是人工智能(AI)的一个分支,旨在通过算法和统计模型,使计算机系统能够从数据中学习并自动改进。机器学习算法使用数据来构建模型,该模型可用于预测或决策。机器学习应用于各种领域&#x…...

python项目(课设)——飞机大战小游戏项目源码(pygame)

主程序 import pygame from plane_sprites import * class PlaneGame: """ 游戏类 """ def __init__(self): print("游戏初始化") # 初始化字体模块 pygame.font.init() # 创建游戏…...

Chatgpt教我打游戏攻略

宝可梦朱 我在玩宝可梦朱的时候,我的同行队伍里有黏美儿,等级为65,遇到了下雨天但是没有进化,为什么呢? 黏美儿(Goomy)要进化为黏美龙(Goodra),需要满足以下…...

最全信息收集工具集

吉祥学安全知识星球🔗除了包含技术干货:Java代码审计、web安全、应急响应等,还包含了安全中常见的售前护网案例、售前方案、ppt等,同时也有面向学生的网络安全面试、护网面试等。 所有的攻防、渗透第一步肯定是信息收集了&#xf…...

redis类型解析汇总

redis类型解析汇总 介绍数据类型简介主要数据类型:衍生类型: 字符串(String)底层设计原理图例设计优势字符串使用方法设置字符串值获取字符串值获取和设置部分字符串获取字符串长度追加字符串设置新值并返回旧值递增/递减同时设置…...

Unity3d自定义TCP消息替代UNet实现网络连接

以前使用UNet实现网络连接,Unity2018以后被弃用了。要将以前的老程序升到高版本,最开始打算使用Mirro,结果发现并不好用。那就只能自己写连接了。 1.TCP消息结构 (1). TCP消息是按流传输的,会发生粘包。那么在发射和接收消息时就需要对消息进行打包和解包。如果接收的消息…...

git fetch 和 git pull区别

git branch //查看本地所有分支 git branch -r //查看远程所有分支 git branch -a //查看本地和远程的所有分支 git branch <branchname> //新建分支 git branch -d <branchname> //删除本地分支 git branch -d -r <branchname> //删除远程分支&#x…...

冲击2024年CSDN博客之星TOP1:CSDN文章质量分查询在哪里?

文章目录 一&#xff0c;2023年博客之星规则1&#xff0c;不高的入围门槛2&#xff0c;[CSDN博文质量分测评地址](https://www.csdn.net/qc) 二&#xff0c;高分秘籍1&#xff0c;要有目录2&#xff0c;文章长度要足够&#xff0c;我的经验是汉字加代码至少1000字。3&#xff0…...

高性能并行计算华为云实验一:MPI矩阵运算

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建矩阵乘法源码 3.1.1 实验说明 3.1.2 实验步骤 3.2 创建卷积和池化操作源码 3.2.1 实验说明 3.2.2 实验步骤 3.3 创建Makefile文件并完成编译 3.4 建立主机配置文件与运行监测 四、实验结果与分析 4.1 矩阵乘法…...

库卡机器人减速机维修齿轮磨损故障

一、KUKA机器人减速器齿轮磨损故障的原因 1. 润滑不足&#xff1a;润滑油不足或质量不佳可能导致齿轮磨损。 2. 负载过重&#xff1a;超过库卡机械臂减速器额定负载可能导致齿轮磨损。 3. 操作不当&#xff1a;未按照说明书操作可能导致KUKA机器人减速器齿轮磨损。 4. 维护不足…...

【C/C++】我自己提出的数组探针的概念,快来围观吧

数组探针 在许多编程语言中如果涉及到数组那么就可以使用这个东西&#xff0c;便于遍历数组 中文名 数组探针 外文名 arrProbe 适用领域 大数据 所属学科 软件技术、编程 提出者 董翔 目录 1 概述2 工作原理3 应用场景 ▪ 数据处理和分析▪ 图像处理▪ 游戏开发▪…...

ArcGIS图斑分区(组)排序—从上到下从左到右

​​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 ArcGIS图斑分区&#xff08;组&#xff09;从上到下从左到右排序 是之前的内容的升级 GIS技巧100例——12ArcGIS图斑空间排序 关于今天的内容 我们在19年已经和大家分…...

React useRef 组件内及组件传参使用

保存变量&#xff0c; 改变不引起渲染 import { useRef} from react; const dataRef useRef(null) ... dataRef.current setTimeout(()>console.log(...),1000)绑定dom const inputRef useRef(null) <input ref {inputRef} />绑定dom列表 - ref 回调 const ite…...

Intelij IDEA中Mapper.xml无法构建到资源目录的问题

问题场景&#xff1a; 在尝试把原本在eclipse上的Java Web项目转移至Intelij idea上时&#xff0c;在配置文件均与eclipse一致的情况下出现了如下报错&#xff1a; org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): cn.umbrella.crm_core.…...

2024.6.23周报

目录 摘要 ABSTRACT 一、文献阅读 一、题目 二、摘要 三、网络架构 四、创新点 五、文章解读 1、Introduction 2、Method 3、实验 4、结论 二、代码实验 总结 摘要 本周阅读了一篇题目为NAS-PINN: NEURAL ARCHITECTURE SEARCH-GUIDED PHYSICS-INFORMED NEURAL N…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...