【深度神经网络 (DNN)】
深度神经网络 (DNN)
深度神经网络 (DNN) 是机器学习领域中一种强大的工具,它由多层神经元组成,能够学习复杂的数据模式,解决各种任务,如图像识别、语音识别、自然语言处理等。
DNN 的构成:
神经元: DNN 的基本单元,接收多个输入,并通过激活函数输出一个值。
层: 多个神经元按特定结构排列,形成层。
连接: 神经元之间通过权重连接,权重决定了信号传递的强度。
激活函数: 用于引入非线性,使网络能够学习更复杂的关系。
损失函数: 用于衡量模型预测值与真实值之间的差距。
优化算法: 用于更新网络参数,降低损失函数的值。
DNN 的优势:
强大的学习能力: DNN 可以学习复杂的数据模式,解决线性模型难以处理的非线性问题。
端到端训练: DNN 可以对整个模型进行端到端训练,避免人工特征工程的繁琐步骤。
自动特征提取: DNN 可以自动学习数据的关键特征,无需人工干预。
适应性强: DNN 可以适应各种数据类型和任务,具有很高的通用性。
DNN 的常见类型:
卷积神经网络 (CNN): 擅长处理图像数据,利用卷积操作提取特征。
循环神经网络 (RNN): 擅长处理序列数据,如文本和音频,利用循环结构保留时序信息。
长短期记忆网络 (LSTM): 是 RNN 的一种变体,能够处理更长的序列数据。
生成对抗网络 (GAN): 用于生成与真实数据相似的新数据,由生成器和判别器组成。
DNN 的应用:
图像识别: 目标检测、人脸识别、图像分类
语音识别: 语音转文字、语音控制
自然语言处理: 机器翻译、文本摘要、问答系统
推荐系统: 个性化推荐、商品推荐
医疗诊断: 疾病预测、影像分析
DNN 的挑战:
数据需求量大: DNN 需要大量的训练数据才能达到良好的性能。
训练时间长: DNN 的训练过程可能需要很长时间。
模型复杂性: DNN 的模型结构可能非常复杂,难以理解和解释。
过度拟合: DNN 容易过度拟合训练数据,导致在测试数据上表现不佳。
学习资源:
Coursera: “Neural Networks and Deep Learning” by Andrew Ng
Deep Learning Book: https://www.deeplearningbook.org/
斯坦福大学CS231n: http://cs231n.stanford.edu/
总结:
深度神经网络是机器学习领域的一种强大工具,拥有强大的学习能力和适应性,在各种领域得到广泛应用。然而,DNN 也面临着数据需求量大、训练时间长等挑战,需要谨慎选择和优化。
相关文章:
【深度神经网络 (DNN)】
深度神经网络 (DNN) 深度神经网络 (DNN) 是机器学习领域中一种强大的工具,它由多层神经元组成,能够学习复杂的数据模式,解决各种任务,如图像识别、语音识别、自然语言处理等。 DNN 的构成: 神经元: DNN 的基本单元&…...

ES全文检索支持繁简和IK分词检索
ES全文检索支持繁简和IK分词检索 1. 前言2. 引入繁简转换插件analysis-stconvert2.1 下载已有作者编译后的包文件2.2 下载源码进行编译2.3 复制解压插件到es安装目录的plugins文件夹下 3. 引入ik分词器插件3.1 已有作者编译后的包文件3.2 只有源代码的版本3.3 安装ik分词插件 4…...
解决Visual Studio Code在Ubuntu上崩溃的问题
解决Visual Studio Code在Ubuntu上崩溃的问题 我正在使用Ubuntu系统,每次打开Visual Studio Code时,只能短暂打开一秒钟,然后就会崩溃。当通过终端使用code --verbose命令启动Visual Studio Code时,出现以下错误信息:…...
【OpenGauss源码学习 —— (ALTER TABLE(SET attribute_option))】
ALTER TABLE(SET attribute_option) ATExecSetOptions 函数 声明:本文的部分内容参考了他人的文章。在编写过程中,我们尊重他人的知识产权和学术成果,力求遵循合理使用原则,并在适用的情况下注明引用来源。…...

Elasticsearch 数据提取 - 最适合这项工作的工具是什么?
作者:来自 Elastic Josh Asres 了解在 Elasticsearch 中为你的搜索用例提取数据的所有不同方式。 对于搜索用例,高效采集和处理来自各种来源的数据的能力至关重要。无论你处理的是 SQL 数据库、CRM 还是任何自定义数据源,选择正确的数据采集…...
‘浔川画板v5.1’即将上线!——浔川python社
1 简介: 浔川画板是一款专业的数字绘画和漫画创作软件,它为艺术家和设计师提供了丰富的绘画工具、色彩管理功能以及易于使用的界面。用户可以使用浔川画板进行手绘风格的绘画、精细的素描、漫画分格、UI设计等多种创作。该软件支持多种笔刷和特效&#…...

RockChip Android12 System之Datetime
一:概述 本文将针对Android12 Settings二级菜单System中Date&time的UI修改进行说明。 二:Date&Time 1、Activity packages/apps/Settings/AndroidManifest.xml <activityandroid:name="Settings$DateTimeSettingsActivity"android:label="@stri…...

详解 ClickHouse 的副本机制
一、简介 副本功能只支持 MergeTree Family 的表引擎,参考文档:https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/replication/ ClickHouse 副本的目的主要是保障数据的高可用性,即使一台 ClickHouse 节点宕机&#…...

速卖通测评成本低见效快,自养号测评的实操指南,快速积累销量和好评
对于初入速卖通的新卖家而言,销量和评价的积累显得尤为关键。由于新店铺往往难以获得平台活动的青睐,因此流量的获取成为了一大挑战。在这样的背景下,进行产品测评以积累正面的用户反馈和销售记录,成为了提升店铺信誉和吸引潜在顾…...

php反序列化漏洞简介
目录 php序列化和反序列化简介 序列化 反序列化 类中定义的属性 序列化实例 反序列化实例 反序列化漏洞 序列化返回的字符串格式 魔术方法和反序列化利用 绕过wakeup 靶场实战 修复方法 php序列化和反序列化简介 序列化 将对象状态转换为可保持或可传输的格式的…...

力扣随机一题 模拟+字符串
博客主页:誓则盟约系列专栏:IT竞赛 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 1910.删除一个字符串中所有出现的给定子字符串【中等】 题目: …...
java-正则表达式 1
Java中的正则表达式 1. 正则表达式的基本概念 正则表达式(Regular Expression, regex)是一种用于匹配字符串中字符组合的模式。正则表达式广泛应用于字符串搜索、替换和解析。Java通过java.util.regex包提供了对正则表达式的支持,该包包含两…...

Python xlrd库:读excel表格
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

开发中遇到的一个bug
遇到的报错信息是这样的: java: Annotation processing is not supported for module cycles. Please ensure that all modules from cycle [hm-api,hm-common,hm-service] are excluded from annotation processing 翻译过来就是存在循环引用的情况,导…...
Java面试题:对比不同的垃圾收集器(如Serial、Parallel、CMS、G1)及其适用场景
Java虚拟机(JVM)提供了多种垃圾收集器,每种垃圾收集器在性能和适用场景上各有不同。以下是对几种常见垃圾收集器(Serial、Parallel、CMS、G1)的对比及其适用场景的详细介绍: 1. Serial 垃圾收集器 Serial…...

每日一题——冒泡排序
C语言——冒泡排序 冒泡排序练习 前言:CSDN的小伙伴们,大家好!今天我来给大家分享一种解题思想——冒泡排序。 冒泡排序 冒泡法的核心思想:两两相邻的元素进行比较 2.冒泡排序的算法描述如下。 (1)比较相邻的元素。如果第一 个比…...
javascript浏览器对象模型
BOM对象: BOM 是浏览器对象模型的简称。JavaScript 将整个浏览器窗口按照实现的功能不同拆分成若干个对象; 包含:window 对象、history 对象、location 对象和 document 对象等 window对象: 常用方法: 1.prompt();…...
C语言之链表以及单链表的实现
一:链表的引入 1:从数组的缺陷说起 (1)数组有两个缺陷。一个是数组中所有元素类型必须一致,第二是数组的元素个数必须事先指定并且一旦指定后不能更改 (2)如何解决数组的两个缺陷:数…...

AI在线免费视频工具2:视频配声音;图片说话hedra
1、视频配声音 https://deepmind.google/discover/blog/generating-audio-for-video/ https://www.videotosoundeffects.com/ (免费在线使用) 2、图片说话在线图片生成播报hedra hedra 上传音频与图片即可合成 https://www.hedra.com/ https://www.…...
Elastic字段映射(_source,doc_value,fileddata,index,store)
Elastic字段映射(_source,doc_value,filed_data,index,store) _source: source 字段用于存储 post 到 ES 的原始 json 文档。为什么要存储原始文档呢?因为 ES 采用倒排索引对文本进行搜索,而倒排索引无法存储原始输入…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...