当前位置: 首页 > news >正文

什么是js?特点是什么?组成部分?

Js是一种直译式脚本语言,一种动态类型,弱类型,基于原型的高级语言。

直译式:js程序运行过程中直接编译成机器语言。

脚本语言:在程序运行过程中逐行进行解释说明,不需要预编译。

动态类型:js声明变量后,可以随时改变它的数据类型。

弱类型:不需要提前做类型声明,而是程序在运行过程中检查它的数据类型。

Js的特点:

简单性:js使用的数据类型是弱类型,没有采用严格的数据类型。

安全性:js不允许直接访问本地硬盘,不允许对网络文档进行修改与删除。

动态性:js可直接对用户的输入做出响应,而无需经过web服务系统。

跨平台性:js只对当前的浏览器有关,与操作系统无关。

Js的组成部分:

ECMAScript:是js的基础,也是js的核心。

Dom:文档对象模型,对文档进行操作。

Bom:浏览器对象模型:对浏览器进行修改与操作。

相关文章:

什么是js?特点是什么?组成部分?

Js是一种直译式脚本语言,一种动态类型,弱类型,基于原型的高级语言。 直译式:js程序运行过程中直接编译成机器语言。 脚本语言:在程序运行过程中逐行进行解释说明,不需要预编译。 动态类型:js…...

Java 面试题:如何保证集合是线程安全的? ConcurrentHashMap 如何实现高效地线程安全?

在多线程编程中,保证集合的线程安全是一个常见而又重要的问题。线程安全意味着多个线程可以同时访问集合而不会导致数据不一致或程序崩溃。在 Java 中,确保集合线程安全的方法有多种,包括使用同步包装类、锁机制以及并发集合类。 最简单的方法…...

打工人的PPT救星来了!用这款AI工具,10秒生成您的专属PPT

今天帮同事解决了一个代码合并的问题。其实问题不复杂,要把1的代码合到2的位置: 这个处理方式其实很简单,使用 “git cherry-pick hash值” 就可以。 同事直接对我赞许有加,不曾想被领导看到了,对我说了一句&#xff…...

GIT 合拼

合拼有多种方式: 1)合拼分支: git merge [source-branch] 2)合拼提交 : git cherry-pick [commit-hash] 3)合拼单个文件: git checkout [source-branch] – [file] 以上合拼,比如将分…...

利用 Python 和 AI 技术制作智能问答机器人

利用 Python 和 AI 技术制作智能问答机器人 引言 在人工智能的浪潮下,智能问答机器人成为了一种非常实用的技术。它们能够处理大量的查询,提供即时的反馈,并且可以通过机器学习技术不断优化自身的性能。本文将介绍如何使用 Python 来开发一…...

electron系列(一)调用dll

用electron的目的,其实很简单。就是web架构要直接使用前端电脑的资源,但是浏览器限制了使用,所以用electron来达到这个目的。其中调用dll是一个非常基本的操作。 安装 ffi-napi 和 ref-napi 包: npm install ffi-napi ref-napi main.js&…...

VUE3实现个人网站模板源码

文章目录 1.设计来源1.1 网站首页页面1.2 个人工具页面1.3 个人日志页面1.4 个人相册页面1.5 给我留言页面 2.效果和源码2.1 动态效果2.2 目录结构 源码下载万套模板,程序开发,在线开发,在线沟通 作者:xcLeigh 文章地址&#xff1…...

C语言 | Leetcode C语言题解之第162题寻找峰值

题目&#xff1a; 题解&#xff1a; int findPeakElement(int* nums, int numsSize) {int ls_max0;for(int i1;i<numsSize;i){if(nums[ls_max]>nums[i]);else{ls_maxi;}}return ls_max; }...

利用pickle保存和加载对象

使用 pickle.dump 保存下来的文件可以使用 pickle.load 打开和读取。以下是一个示例&#xff0c;展示了如何使用 pickle 模块保存和加载对象&#xff1a; 保存对象 import pickle# 假设有一个对象 obj obj {"key": "value"}# 将对象保存到文件 with ope…...

定制汽车霍尔传感器

磁电效应霍尔传感器、饱和霍尔传感器、非线性霍尔传感器 霍尔传感器原理 霍尔传感器的工作原理基于霍尔效应&#xff0c;即当一块通有电流的金属或半导体薄片垂直地放在磁场中时&#xff0c;薄片的两端会产生电位差。这种现象称为霍尔效应&#xff0c;两端具有的电位差值称为…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的巡演(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…...

ChatGPT 简介

ChatGPT 是一种基于大型语言模型的对话系统&#xff0c;由 OpenAI 开发。它的核心是一个深度学习模型&#xff0c;使用了 GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构。以下是 ChatGPT 的原理和工作机制的详细介绍&#xff1a; ### GPT 架构 1. **Tr…...

大数据实训室建设可行性报告

一、建设大数据实训室的背景与意义 随着信息技术的飞速发展&#xff0c;大数据已成为推动社会进步和经济发展的重要力量。中高职院校作为技能型人才培养的摇篮&#xff0c;承担着为社会输送大数据领域高素质、高技能人才的重要任务。因此&#xff0c;建设大数据实训室&#xf…...

学懂C#编程:让函数返回 多个返回值 的几种常用技术

1. 使用 out 或 ref 参数 out 和 ref 参数允许方法修改传入变量的值&#xff0c;并通过它们“返回”多个值。ref 需要变量事先初始化&#xff0c;而 out 不要求。 public void GetValues(out int val1, out string val2) {val1 10;val2 "Hello"; }// 使用示例 int…...

蔚来汽车AI算法工程师,如何理解注意力?

大家好啊&#xff0c;我是董董灿。 今天分享一个上海蔚来汽车的AI算法岗位面试经验总结帖&#xff0c;面试岗位为算法工程师。 这次面试提到的问题&#xff0c;除了与实习相关内容和反问之外&#xff0c;面试官总共问了8个问题&#xff0c;主要集中在深度学习基础概念的理解上…...

信创适配评测

概叙 信创科普参考&#xff1a;全面国产化之路-信创-CSDN博客 有必要再解释一下两个名词“28N”&#xff0c;“79号文件”&#xff0c;因为“28N”指定了由政府牵头从各领域开启国产化的基调&#xff0c;而“79号文件”则指定了国产化的截止日期2027年。 信创的本质是实现中国信…...

【Qt6.3 基础教程 04】探索Qt项目结构和配置文件

文章目录 前言Qt项目的基本结构配置文件&#xff1a;.pro文件基本构成示例.pro文件&#xff1a; qmake和构建过程步骤简述&#xff1a; 修改项目设置结论 前言 当你开始使用Qt进行开发时&#xff0c;理解项目结构和配置文件的作用是至关重要的。这篇博文将带你深入了解Qt项目的…...

SpringBoot测试实践

测试按照粒度可分为3层&#xff1a; 单元测试&#xff1a;单元测试&#xff08;Unit Testing&#xff09;又称为模块测试 &#xff0c;是针对程序模块&#xff08;软件设计的最小单位&#xff09;来进行正确性检验的测试工作。程序单元是应用的最小可测试部件。在过程化编程中…...

Flask-OAuthlib

Flask-OAuthlib库教程 Flask-OAuthlib 是一个为 Flask 应用提供 OAuth1 和 OAuth2 支持的库。它允许开发者轻松地集成第三方 OAuth 服务&#xff0c;或者构建自己的 OAuth 提供者服务。 官方文档链接 Flask-OAuthlib官方文档 架构概述 Flask-OAuthlib 的主要组件包括&…...

树和森林.

目录 一、树 1.1树的存储结构 1.1.1双亲表示法 1.1.2孩子链表 1.1.3孩子兄弟表示法 1.2树与二叉树的转换 1.2.1将树转换成二叉树&#xff1a; 1.2.2将二叉树转换成树 二、森林 2.1森林与二叉树的转换 2.1.1将森林转换成二叉树 2.1.2二叉树转换成森林 三、树和森林的…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...