ChatGPT 简介
ChatGPT 是一种基于大型语言模型的对话系统,由 OpenAI 开发。它的核心是一个深度学习模型,使用了 GPT(Generative Pre-trained Transformer)架构。以下是 ChatGPT 的原理和工作机制的详细介绍:
### GPT 架构
1. **Transformer 架构**:
- Transformer 是一种用于处理序列数据的神经网络架构,擅长自然语言处理任务。
- 它由编码器(Encoder)和解码器(Decoder)组成,但 GPT 只使用了解码器部分。
- Transformer 的核心组件是自注意力机制(Self-Attention),它能够捕捉句子中各个词语之间的关系。
2. **预训练和微调**:
- **预训练(Pre-training)**:模型在大量的文本数据上进行无监督学习,通过预测下一个词语来学习语言的统计特性和结构。
- **微调(Fine-tuning)**:在特定任务的数据集上进一步训练模型,使其能够执行特定的任务,如对话生成、文本摘要等。
### 工作流程
1. **输入处理**:
- 用户输入的文本被分词(Tokenization)并转换为词嵌入(Word Embeddings)。
- 这些嵌入作为模型的输入,进入 Transformer 的多个自注意力和前馈神经网络层。
2. **上下文理解**:
- 自注意力机制使模型能够理解输入文本中的上下文关系,通过权重调整关注不同的词语。
- 多层自注意力网络使模型能够捕捉更复杂的语义和句法结构。
3. **生成响应**:
- 模型根据输入生成下一个词语的概率分布。
- 使用贪心搜索、Beam Search 或其他采样方法,从概率分布中选取最可能的词语,逐步生成完整的响应。
4. **后处理**:
- 生成的词语序列被转换回文本形式,并进行必要的语法和格式调整,生成最终的响应文本。
### 训练数据
ChatGPT 的预训练使用了大量的互联网文本数据,这些数据涵盖了广泛的主题和语言模式。这使得模型能够生成多样化且具有连贯性的对话内容。然而,模型本身没有内在的知识或记忆,只是通过训练数据中学到的模式来生成响应。
### 优化和调优
1. **监督学习和强化学习**:
- 使用监督学习进行初始训练,让模型学习生成合理的对话。
- 采用强化学习(如基于人类反馈的强化学习,RLHF)进一步优化模型的响应质量。
2. **安全性和伦理**:
- 对模型进行过滤和监控,防止生成不当内容。
- 使用安全协议和限制来减少误用和滥用的风险。
### 应用场景
1. **客户支持**:自动回答客户常见问题,提供 24/7 支持服务。
2. **内容创作**:辅助撰写文章、故事或其他文本内容。
3. **教育辅导**:帮助解答学生问题,提供学习资源。
4. **个人助手**:协助管理日程、提醒和信息查询。
### 局限性和挑战
1. **准确性和可靠性**:
- 模型可能生成错误或不准确的信息。
- 对上下文的理解有时可能不完整或错误。
2. **偏见和伦理问题**:
- 由于训练数据的来源,模型可能继承并放大数据中的偏见。
- 需要不断监控和改进以减少有害或不当的生成内容。
3. **依赖于训练数据**:
- 模型的性能高度依赖于预训练数据的质量和多样性。
- 对新知识和最新信息的理解有限,无法提供实时更新的内容。
ChatGPT 的原理涉及复杂的深度学习和自然语言处理技术,通过不断的训练和优化,已经在多种应用中展现出强大的对话生成能力。然而,持续的研究和改进仍然是确保其安全性、准确性和可靠性的关键。
相关文章:
ChatGPT 简介
ChatGPT 是一种基于大型语言模型的对话系统,由 OpenAI 开发。它的核心是一个深度学习模型,使用了 GPT(Generative Pre-trained Transformer)架构。以下是 ChatGPT 的原理和工作机制的详细介绍: ### GPT 架构 1. **Tr…...
大数据实训室建设可行性报告
一、建设大数据实训室的背景与意义 随着信息技术的飞速发展,大数据已成为推动社会进步和经济发展的重要力量。中高职院校作为技能型人才培养的摇篮,承担着为社会输送大数据领域高素质、高技能人才的重要任务。因此,建设大数据实训室…...
学懂C#编程:让函数返回 多个返回值 的几种常用技术
1. 使用 out 或 ref 参数 out 和 ref 参数允许方法修改传入变量的值,并通过它们“返回”多个值。ref 需要变量事先初始化,而 out 不要求。 public void GetValues(out int val1, out string val2) {val1 10;val2 "Hello"; }// 使用示例 int…...
蔚来汽车AI算法工程师,如何理解注意力?
大家好啊,我是董董灿。 今天分享一个上海蔚来汽车的AI算法岗位面试经验总结帖,面试岗位为算法工程师。 这次面试提到的问题,除了与实习相关内容和反问之外,面试官总共问了8个问题,主要集中在深度学习基础概念的理解上…...
信创适配评测
概叙 信创科普参考:全面国产化之路-信创-CSDN博客 有必要再解释一下两个名词“28N”,“79号文件”,因为“28N”指定了由政府牵头从各领域开启国产化的基调,而“79号文件”则指定了国产化的截止日期2027年。 信创的本质是实现中国信…...
【Qt6.3 基础教程 04】探索Qt项目结构和配置文件
文章目录 前言Qt项目的基本结构配置文件:.pro文件基本构成示例.pro文件: qmake和构建过程步骤简述: 修改项目设置结论 前言 当你开始使用Qt进行开发时,理解项目结构和配置文件的作用是至关重要的。这篇博文将带你深入了解Qt项目的…...
SpringBoot测试实践
测试按照粒度可分为3层: 单元测试:单元测试(Unit Testing)又称为模块测试 ,是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作。程序单元是应用的最小可测试部件。在过程化编程中…...
Flask-OAuthlib
Flask-OAuthlib库教程 Flask-OAuthlib 是一个为 Flask 应用提供 OAuth1 和 OAuth2 支持的库。它允许开发者轻松地集成第三方 OAuth 服务,或者构建自己的 OAuth 提供者服务。 官方文档链接 Flask-OAuthlib官方文档 架构概述 Flask-OAuthlib 的主要组件包括&…...
树和森林.
目录 一、树 1.1树的存储结构 1.1.1双亲表示法 1.1.2孩子链表 1.1.3孩子兄弟表示法 1.2树与二叉树的转换 1.2.1将树转换成二叉树: 1.2.2将二叉树转换成树 二、森林 2.1森林与二叉树的转换 2.1.1将森林转换成二叉树 2.1.2二叉树转换成森林 三、树和森林的…...
ubuntu下同时安装和使用不同版本的库 librealsense
apt 安装的最新版本在/usr 源码安装的旧版本在/usr/local set(realsense2_DIR /usr/local/) find_package(realsense2 2.50.0 REQUIRED) message( "\n\n ${realsense2_INCLUDE_DIR} ${realsense2_VERSION} RealSense SDK 2.0 is FINDINGING, please install it from…...
openEuler操作系统下静默安装Oracle19c
在openEuler-23.09上安装Oracle19c,创建非容器数据库实例(含静默安装) 操作系统版本 openEuler-23.09-x86_64-dvd.iso ,安装步骤此处省略。。。 最常用且直接的方法来查看openEuler的版本号是查看/etc/os-release文件 [root@openEuler ~]$ cat /etc/os-release NAME="…...
Linux CPU常见命令行详解
在Linux系统中,命令行是管理和监控系统资源的重要工具。特别是当我们需要了解CPU的状态、性能和利用率时,一系列命令行工具就显得尤为重要。本文将详细介绍Linux中与CPU相关的常见命令行工具及其使用方法,帮助大家更好地理解和利用这些工具来…...
防止更新或保存 Laravel 模型
例如,创建模型后,我不希望任何人能够再次更新该记录。相反,它应该被全新的记录覆盖并存档。 这是一个简单的特征,您可以在模型上使用它来禁用更新: trait PreventsUpdating {public static function bootPreventsUpd…...
Cadence:Conformal系列形式验证工具
Conformal 工具最早由Verplex Systems开发。Verplex是一家专注于形式验证工具开发的公司,其核心产品是Conformal等效性检查工具。由于其技术的先进性和市场需求,Verplex的 Conformal工具迅速在半导体行业内获得了认可。 2003 年,Cadence Desi…...
一般人不要学Python?一般人怎么学Python!!
关于“建议一般人真的不要学Python”这一观点,我认为这是一个过于绝对的说法。实际上,Python作为一种流行的编程语言,具有许多优点,适合不同背景和需求的人学习。以下是一些反驳这一观点的理由: 易于学习和理解&#x…...
微服务架构中间件安装部署
微服务架构中间件安装部署 jdk安装 安装包jdk-8u144-linux-x64.tar.gz 先检查系统原版本的jdk并卸载 rpm -qa | grep java 显示信息如下: tzdata-java-2014g-1.el6.noarch java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64 java-1.7.0-openjdk-1.7.0.65-2.5.1.2.…...
车辆数据的提取、定位和融合(其一 共十二篇)
第一篇: System Introduction 第二篇:State of the Art 第三篇:localization 第四篇:Submapping and temporal weighting 第五篇:Mapping of Point-shaped landmark data 第六篇:Clustering of landma…...
Vue3组件通信全解析:利用props、emit、provide/inject跨层级传递数据,expose与ref实现父子组件方法调用
文章目录 一、父组件数据传递N个层级的子组件vue3 provide 与 injectA组件名称 app.vueB组件名称 provideB.vueC组件名称 provideCSetup.vue 二、使用v-model指令实现父子组件的双向绑定父组件名称 app.vue子组件名称 v-modelSetup.vue 三、父组件props向子组件传值子组件 prop…...
华为---OSPF被动接口配置(四)
9.4 OSPF被动接口配置 9.4.1 原理概述 OSPF被动接口也称抑制接口,成为被动接口后,将不会接收和发送OSPF报文。如果要使OSPF路由信息不被某一网络中的路由器获得且使本地路由器不接收网络中其他路由器发布的路由更新信息,即已运行在OSPF协议…...
前端将Markdown文本转换为富文本显示/编辑,并保存为word文件
参考:https://www.wangeditor.com/ https://blog.csdn.net/weixin_43797577/article/details/138854324 插件: markdown-it traptitech/markdown-it-katex markdown-it-link-attributes highlight.js wangeditor/editor wangeditor/editor-for-vue html…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
