当前位置: 首页 > news >正文

ChatGPT 简介

ChatGPT 是一种基于大型语言模型的对话系统,由 OpenAI 开发。它的核心是一个深度学习模型,使用了 GPT(Generative Pre-trained Transformer)架构。以下是 ChatGPT 的原理和工作机制的详细介绍:

### GPT 架构

1. **Transformer 架构**:
   - Transformer 是一种用于处理序列数据的神经网络架构,擅长自然语言处理任务。
   - 它由编码器(Encoder)和解码器(Decoder)组成,但 GPT 只使用了解码器部分。
   - Transformer 的核心组件是自注意力机制(Self-Attention),它能够捕捉句子中各个词语之间的关系。

2. **预训练和微调**:
   - **预训练(Pre-training)**:模型在大量的文本数据上进行无监督学习,通过预测下一个词语来学习语言的统计特性和结构。
   - **微调(Fine-tuning)**:在特定任务的数据集上进一步训练模型,使其能够执行特定的任务,如对话生成、文本摘要等。

### 工作流程

1. **输入处理**:
   - 用户输入的文本被分词(Tokenization)并转换为词嵌入(Word Embeddings)。
   - 这些嵌入作为模型的输入,进入 Transformer 的多个自注意力和前馈神经网络层。

2. **上下文理解**:
   - 自注意力机制使模型能够理解输入文本中的上下文关系,通过权重调整关注不同的词语。
   - 多层自注意力网络使模型能够捕捉更复杂的语义和句法结构。

3. **生成响应**:
   - 模型根据输入生成下一个词语的概率分布。
   - 使用贪心搜索、Beam Search 或其他采样方法,从概率分布中选取最可能的词语,逐步生成完整的响应。

4. **后处理**:
   - 生成的词语序列被转换回文本形式,并进行必要的语法和格式调整,生成最终的响应文本。

### 训练数据

ChatGPT 的预训练使用了大量的互联网文本数据,这些数据涵盖了广泛的主题和语言模式。这使得模型能够生成多样化且具有连贯性的对话内容。然而,模型本身没有内在的知识或记忆,只是通过训练数据中学到的模式来生成响应。

### 优化和调优

1. **监督学习和强化学习**:
   - 使用监督学习进行初始训练,让模型学习生成合理的对话。
   - 采用强化学习(如基于人类反馈的强化学习,RLHF)进一步优化模型的响应质量。

2. **安全性和伦理**:
   - 对模型进行过滤和监控,防止生成不当内容。
   - 使用安全协议和限制来减少误用和滥用的风险。

### 应用场景

1. **客户支持**:自动回答客户常见问题,提供 24/7 支持服务。
2. **内容创作**:辅助撰写文章、故事或其他文本内容。
3. **教育辅导**:帮助解答学生问题,提供学习资源。
4. **个人助手**:协助管理日程、提醒和信息查询。

### 局限性和挑战

1. **准确性和可靠性**:
   - 模型可能生成错误或不准确的信息。
   - 对上下文的理解有时可能不完整或错误。

2. **偏见和伦理问题**:
   - 由于训练数据的来源,模型可能继承并放大数据中的偏见。
   - 需要不断监控和改进以减少有害或不当的生成内容。

3. **依赖于训练数据**:
   - 模型的性能高度依赖于预训练数据的质量和多样性。
   - 对新知识和最新信息的理解有限,无法提供实时更新的内容。

ChatGPT 的原理涉及复杂的深度学习和自然语言处理技术,通过不断的训练和优化,已经在多种应用中展现出强大的对话生成能力。然而,持续的研究和改进仍然是确保其安全性、准确性和可靠性的关键。

相关文章:

ChatGPT 简介

ChatGPT 是一种基于大型语言模型的对话系统,由 OpenAI 开发。它的核心是一个深度学习模型,使用了 GPT(Generative Pre-trained Transformer)架构。以下是 ChatGPT 的原理和工作机制的详细介绍: ### GPT 架构 1. **Tr…...

大数据实训室建设可行性报告

一、建设大数据实训室的背景与意义 随着信息技术的飞速发展,大数据已成为推动社会进步和经济发展的重要力量。中高职院校作为技能型人才培养的摇篮,承担着为社会输送大数据领域高素质、高技能人才的重要任务。因此,建设大数据实训室&#xf…...

学懂C#编程:让函数返回 多个返回值 的几种常用技术

1. 使用 out 或 ref 参数 out 和 ref 参数允许方法修改传入变量的值,并通过它们“返回”多个值。ref 需要变量事先初始化,而 out 不要求。 public void GetValues(out int val1, out string val2) {val1 10;val2 "Hello"; }// 使用示例 int…...

蔚来汽车AI算法工程师,如何理解注意力?

大家好啊,我是董董灿。 今天分享一个上海蔚来汽车的AI算法岗位面试经验总结帖,面试岗位为算法工程师。 这次面试提到的问题,除了与实习相关内容和反问之外,面试官总共问了8个问题,主要集中在深度学习基础概念的理解上…...

信创适配评测

概叙 信创科普参考:全面国产化之路-信创-CSDN博客 有必要再解释一下两个名词“28N”,“79号文件”,因为“28N”指定了由政府牵头从各领域开启国产化的基调,而“79号文件”则指定了国产化的截止日期2027年。 信创的本质是实现中国信…...

【Qt6.3 基础教程 04】探索Qt项目结构和配置文件

文章目录 前言Qt项目的基本结构配置文件:.pro文件基本构成示例.pro文件: qmake和构建过程步骤简述: 修改项目设置结论 前言 当你开始使用Qt进行开发时,理解项目结构和配置文件的作用是至关重要的。这篇博文将带你深入了解Qt项目的…...

SpringBoot测试实践

测试按照粒度可分为3层: 单元测试:单元测试(Unit Testing)又称为模块测试 ,是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作。程序单元是应用的最小可测试部件。在过程化编程中…...

Flask-OAuthlib

Flask-OAuthlib库教程 Flask-OAuthlib 是一个为 Flask 应用提供 OAuth1 和 OAuth2 支持的库。它允许开发者轻松地集成第三方 OAuth 服务,或者构建自己的 OAuth 提供者服务。 官方文档链接 Flask-OAuthlib官方文档 架构概述 Flask-OAuthlib 的主要组件包括&…...

树和森林.

目录 一、树 1.1树的存储结构 1.1.1双亲表示法 1.1.2孩子链表 1.1.3孩子兄弟表示法 1.2树与二叉树的转换 1.2.1将树转换成二叉树: 1.2.2将二叉树转换成树 二、森林 2.1森林与二叉树的转换 2.1.1将森林转换成二叉树 2.1.2二叉树转换成森林 三、树和森林的…...

ubuntu下同时安装和使用不同版本的库 librealsense

apt 安装的最新版本在/usr 源码安装的旧版本在/usr/local set(realsense2_DIR /usr/local/) find_package(realsense2 2.50.0 REQUIRED) message( "\n\n ${realsense2_INCLUDE_DIR} ${realsense2_VERSION} RealSense SDK 2.0 is FINDINGING, please install it from…...

openEuler操作系统下静默安装Oracle19c

在openEuler-23.09上安装Oracle19c,创建非容器数据库实例(含静默安装) 操作系统版本 openEuler-23.09-x86_64-dvd.iso ,安装步骤此处省略。。。 最常用且直接的方法来查看openEuler的版本号是查看/etc/os-release文件 [root@openEuler ~]$ cat /etc/os-release NAME="…...

Linux CPU常见命令行详解

在Linux系统中,命令行是管理和监控系统资源的重要工具。特别是当我们需要了解CPU的状态、性能和利用率时,一系列命令行工具就显得尤为重要。本文将详细介绍Linux中与CPU相关的常见命令行工具及其使用方法,帮助大家更好地理解和利用这些工具来…...

防止更新或保存 Laravel 模型

例如,创建模型后,我不希望任何人能够再次更新该记录。相反,它应该被全新的记录覆盖并存档。 这是一个简单的特征,您可以在模型上使用它来禁用更新: trait PreventsUpdating {public static function bootPreventsUpd…...

Cadence:Conformal系列形式验证工具

Conformal 工具最早由Verplex Systems开发。Verplex是一家专注于形式验证工具开发的公司,其核心产品是Conformal等效性检查工具。由于其技术的先进性和市场需求,Verplex的 Conformal工具迅速在半导体行业内获得了认可。 2003 年,Cadence Desi…...

一般人不要学Python?一般人怎么学Python!!

关于“建议一般人真的不要学Python”这一观点,我认为这是一个过于绝对的说法。实际上,Python作为一种流行的编程语言,具有许多优点,适合不同背景和需求的人学习。以下是一些反驳这一观点的理由: 易于学习和理解&#x…...

微服务架构中间件安装部署

微服务架构中间件安装部署 jdk安装 安装包jdk-8u144-linux-x64.tar.gz 先检查系统原版本的jdk并卸载 rpm -qa | grep java 显示信息如下: tzdata-java-2014g-1.el6.noarch java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64 java-1.7.0-openjdk-1.7.0.65-2.5.1.2.…...

车辆数据的提取、定位和融合(其一 共十二篇)

第一篇: System Introduction 第二篇:State of the Art 第三篇:localization 第四篇:Submapping and temporal weighting 第五篇:Mapping of Point-shaped landmark data 第六篇:Clustering of landma…...

Vue3组件通信全解析:利用props、emit、provide/inject跨层级传递数据,expose与ref实现父子组件方法调用

文章目录 一、父组件数据传递N个层级的子组件vue3 provide 与 injectA组件名称 app.vueB组件名称 provideB.vueC组件名称 provideCSetup.vue 二、使用v-model指令实现父子组件的双向绑定父组件名称 app.vue子组件名称 v-modelSetup.vue 三、父组件props向子组件传值子组件 prop…...

华为---OSPF被动接口配置(四)

9.4 OSPF被动接口配置 9.4.1 原理概述 OSPF被动接口也称抑制接口,成为被动接口后,将不会接收和发送OSPF报文。如果要使OSPF路由信息不被某一网络中的路由器获得且使本地路由器不接收网络中其他路由器发布的路由更新信息,即已运行在OSPF协议…...

前端将Markdown文本转换为富文本显示/编辑,并保存为word文件

参考:https://www.wangeditor.com/ https://blog.csdn.net/weixin_43797577/article/details/138854324 插件: markdown-it traptitech/markdown-it-katex markdown-it-link-attributes highlight.js wangeditor/editor wangeditor/editor-for-vue html…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...