当前位置: 首页 > news >正文

Flink 容错

Apache Flink 的容错机制是确保数据流应用程序在出现故障时能够恢复一致状态的关键机制。这一机制主要通过创建分布式数据流和操作符状态的一致快照来实现,这些快照被称为检查点(Checkpoint)。以下是 Flink 容错机制的主要特点和关键点:

1. 检查点(Checkpoint)

  • 概念:检查点是 Flink 容错机制的核心。它通过将应用程序的当前状态(包括数据流和操作符状态)保存到持久化存储系统中来创建状态快照。
  • 作用:当系统遇到故障时,Flink 可以从最近的成功检查点恢复,从而确保即使发生故障,应用程序的状态也只会反映数据流中的每个记录一次,实现精确一次(exactly-once)的语义。
  • 保存:检查点的保存是周期性触发的,而不是每次处理完一个数据项就保存。这样可以减少开销,同时保持较低的恢复延迟。

2. 状态一致性

  • Flink 提供了端到端的状态一致性保证,确保从数据源读取数据到数据写入外部系统的整个过程中,数据只被处理一次。

3. 状态存储(State Backends)

  • Flink 提供了多种状态存储后端(State Backends),用于管理应用程序的状态。这些后端包括基于 RocksDB 的存储、基于堆内存的存储以及将状态持久化到分布式文件系统的存储。
  • 不同的状态存储后端具有不同的优缺点,例如访问速度、状态大小限制等。选择合适的状态存储后端取决于应用程序的具体需求。

4. 容错配置参数

  • Flink 提供了多个配置参数来调整容错机制的行为,包括检查点间隔(checkpoint.interval)、检查点超时时间(checkpoint.timeout)、最大并发检查点数(checkpoint.max-concurrent-checks)等。
  • 这些参数可以根据应用程序的需求进行调整,以优化容错性能和恢复时间。

5. 重启策略

  • Flink 支持多种重启策略,包括固定延迟重启、失败率重启等。这些策略定义了当应用程序遇到故障时应如何重启和恢复。

总结

Apache Flink 的容错机制通过创建检查点、提供状态一致性保证、支持多种状态存储后端以及提供灵活的容错配置参数和重启策略,确保了在分布式环境中执行数据流应用程序时的高可用性和容错性。这使得 Flink 成为一个强大而可靠的数据处理框架。

相关文章:

Flink 容错

Apache Flink 的容错机制是确保数据流应用程序在出现故障时能够恢复一致状态的关键机制。这一机制主要通过创建分布式数据流和操作符状态的一致快照来实现,这些快照被称为检查点(Checkpoint)。以下是 Flink 容错机制的主要特点和关键点&#…...

OpenAI策略:指令层级系统让大模型免于恶意攻击

现代的大模型(LLMs)不再仅仅是简单的自动完成系统,它们有潜力赋能各种代理应用,如网页代理、电子邮件秘书、虚拟助手等。然而,这些应用广泛部署的一个主要风险是敌手可能诱使模型执行不安全或灾难性的行动,…...

芝麻清单助力提升学习工作效率 专注时间完成有效的待办事项

芝麻清单助力提升学习&工作效率 专注时间完成有效的工作。今天我们给大家带来一个专注清单,一个更高效的学习和工作的方法! 我们都知道,专注做一个事情,会有效的提升效率,让事情更高效的完成。如果是学习的话&…...

Docker 容器操作命令

文章目录 前言1. 创建并运行容器2. 列出容器3. 停止容器4. 启动已停止的容器5. 重启容器6. 进入容器7. 删除容器8. 查看容器日志9. 导出和导入容器10. 管理网络11. 数据卷操作12. 设置容器自启动 前言 Docker 容器操作是 Docker 使用过程中非常重要的一部分。以下是一些常见的…...

华为配置创建vlan及划接口,trunk干道,DHCP池塘配置

1、创建 vlan [SWA]vlan 10 [SWA-vlan10]quit [SWA]vlan batch2to3510 批量创建vlan2-3,5.10 2、 接口划入 vlan 单个接口修改接口模式为 access [SWA]interface GigabitEthernet 0/0/5 [SWA-GigabitEthernet0/0/5]port link-type access 批修改为 access [H…...

vue3 computed与watch,watchEffect比较

相同点 都是要根据一个或多个响应式数据进行监听 不同点 computed 如要return回来一个新的响应式值,且这个值不允许直接修改,想要修改的话可以设置set函数,在函数里面去修改所依赖的响应式数据,然后计算属性值会基于其响应式依…...

论文:R语言数据分析之机器学习论文

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 一、研究背景 全球范围内,乳腺癌是导致癌症发病率和死亡率的主要疾病之一。根据2018年…...

【C++】STL中优先级队列的使用与模拟实现

前言:在前面我们学习了栈和队列的使用与模拟实现,今天我们来进一步的学习优先级队列使用与模拟实现 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:高质量C学习 👈 💯代码仓库:卫…...

C#开发-集合使用和技巧(二)Lambda 表达式介绍和应用

C#开发-集合使用和技巧 Lambda 表达式介绍和应用 C#开发-集合使用和技巧介绍简单的示例:集合查询示例: 1. 基本语法从主体语句上区分:1. 主体为单一表达式2. 主体是代码块(多个表达式语句) 从参数上区分1. 带输入参数的…...

Qt底层原理:深入解析QWidget的绘制技术细节(2)

(本文续上一篇《Qt底层原理:深入解析QWidget的绘制技术细节(1)》) QWidget绘制体系为什么这么设计【重点】 在传统的C图形界面框架中,例如DUILib等,控件的绘制逻辑往往直接在控件的类的内部,例如PushButt…...

【Gradio】表格数据科学与图表-连接到数据库

简介 本指南解释了如何使用 Gradio 将您的应用程序连接到数据库。我们将连接到托管在 AWS 上的 PostgreSQL 数据库,但 gradio 对您连接到的数据库类型及其托管位置完全不可知。因此,只要您能够编写 Python 代码来连接到您的数据,您就可以使用…...

艾多美用“艾”为生命加油,献血活动回顾

用艾为生命加油 6月10日~16日,艾多美中国开启献血周活动,已经陆续收到来自烟台总部、山东、广东、河南、四川、重庆、贵阳,乌鲁木齐,吉林,等地区的艾多美员工、会员、经销商发来的爱心助力,截止到目前&…...

人工智能在气象预报领域的崛起:GraphCast引领新纪元

最近,谷歌推出的天气预测大模型GraphCast在全球范围内引起了广泛关注,其卓越的表现不仅刷新了人们对AI能力的认知,更预示着传统天气预报工作模式的深刻变革。 GraphCast是一款基于机器学习技术的天气预测工具,它通过深度学习和大数…...

http和https的区别在哪

HTTP(超文本传输协议)和HTTPS(超文本传输安全协议)之间存在几个关键区别主要涉及安全性、端口、成本、加密方式、搜索引擎优化(SEO)、身份验证等方面 1、安全性:HTTP(超文本传输协议…...

windows10远程桌面端口,Windows 10远程桌面端口修改的两个方法

在Windows 10系统中,远程桌面功能允许用户通过网络从一台计算机远程访问和控制另一台计算机。默认情况下,远程桌面服务使用的端口是3389。然而,出于安全考虑,许多管理员和用户希望修改这一默认端口。本指南将详细介绍如何在Window…...

力扣1504.统计全1子矩形

力扣1504.统计全1子矩形 开一个二维数组存每个点从它本身开始向左有多少连续的1 遍历矩形右下角(i,j) 再遍历行k in i每一行的矩形数量 minx min(minx,left(k,j)) class Solution {public:int numSubmat(vector<vector<int>>& mat) {int n mat.size();int…...

vue3高德地图组件化,解决复用地图组件时渲染失败问题

思路&#xff1a;多个页面都需要调用地图&#xff0c;将地图封装成一个组件进行复用&#xff0c;发现调用时只有第一次渲染成功了。 解决&#xff1a;相同 id 的地图渲染只能有一次&#xff0c;如果多个复用地图的页面不需要同时渲染&#xff0c;使用 v-if 来控制&#xff1b;…...

Langchain 如何工作

How does LangChain work? LangChain是如何工作的? Let’s consider our initial example where we upload the US Constitution PDF and pose questions to it. In this scenario, LangChain compiles the data from the PDF and organizes it. 让我们考虑我们最初的例子…...

【数据结构】顺序表实操——通讯录项目

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…...

C++继承与多态—多重继承的那些坑该怎么填

课程总目录 文章目录 一、虚基类和虚继承二、菱形继承的问题 一、虚基类和虚继承 虚基类&#xff1a;被虚继承的类&#xff0c;就称为虚基类 virtual作用&#xff1a; virtual修饰成员方法是虚函数可以修饰继承方式&#xff0c;是虚继承&#xff0c;被虚继承的类就称为虚基类…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...