当前位置: 首页 > news >正文

AI 大模型企业应用实战(06)-初识LangChain

LLM大模型与AI应用的粘合剂。

1 langchain是什么以及发展过程

LangChain是一个开源框架,旨在简化使用大型语言模型构建端到端应用程序的过程,也是ReAct(reason+act)论文的落地实现。

2022年10月25日开源 54K+ star 种子轮一周1000万美金,A轮2500万美金

11个月里累计发布200多次,提交4000多次代码

2 langchain能做什么和能力一览

模型 A
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果模型 B
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果模型 N...
构造提示词 -> LLMs -> 模型生产结果 -> 结果处理 -> 最终结果

Langchain I/O系统

+------------+                +------------------------+                +------------+
|            |       输入      |    +--------------+    |      输入       |            |
|  用户输入  | -------------> |    |    prompt    |    | -------------> |    LLMs      |
|            |                |    +--------------+    |                |            |
|            |                |                        |                |            |
|            |       输出      |    +--------------+    |      输出       |            |
|            | <------------- |    |    Output    |    | <------------- |            |
+------------+                |    |    Parsers   |    |                +------------+|    +--------------+    |+------------------------+Langchain I/O系统
  1. 解决大模型各种问题的提示词工程方案之一
  2. 提供了与LLMs交互的各种组件,极大提升开发效率
  3. 可以以文件方式加载提示词、链等,方便共享提示词和做提示词版本管理
  4. 提供丰富的链式工具箱

LLMs & Prompt

提供了目前市面上几乎所有 LLM 的通用接口,同时还提供了 提示词 的管理和优化能力,同时也提供了非常多的相关适用工具,以方便开发人员利用 LangChain 与 LLMs 进行交互。

Chains

LangChain 把 提示词、大语言模型、结果解析封装成 Chain,并提供标准的接口,以便允许不同的Chain形成交互序列,为 AI 原生应用提供了端到端的 Chain

Retrieval-Augemented Generation

检索增强生成式,一种解决预训练语料数据无法及时更新而带来的回答内容陈旧的方式。LangChain提供支持 检索增强生成式的Chain。使用时,这些 Chain 会首先与外部数据源进行交互以获得对应数据,然后再利用获得的数据与 LLMs 进行交互。典型应用场暴如:基于特定数据源的问答机器人。

Agent

对于一个任务,代理主要涉及让 LLMs 来对任务进行拆分、执行该行动、并观察执行结果,代理 会重复执行这个过程,直到该任务完成为止。LangChain 为 代理 提供了标准接口,可供选择的代理,以及一些端到端的代理的示例

Memory

chain 或 agent 调用之间的状态持久化。LangChain 为 内存 提供了准接口三并提供了↖系烈COn的 内存 实现

Evaluation

LangChain 还提供了非常多的评估能力以允许我们可以更方便的对 LLMs 进行评估

3 langchain的优劣

3.1 优点

  • 平台大语言模型调用能力,支持多平台多模型调用,为用户提供灵活选择
  • 轻量级SDK(python、javas生一起将LLMs与传统编程语言集成持
  • 多模态支持,提供多模态数据支持,如图像、音频等

3.2 缺点

  • 学习曲线相对较高
  • 文档相对不完善,官方文档不是很完善
  • 缺乏大型工业化应用实践

4 langchain开发环境搭建

4.1 为啥用Python?

  • 高级的接近人类语言的编程语言,易于学习
  • 动态语言
  • 直译式语言,可以跳过编译逐行执行代码广泛应用于web应用、软件、数据科学和机器学习
  • AI方向的主流语言
  • 活跃的python社区
  • 数据巨大且丰富的库

4.2 环境要求

Python

= 3.8.1,推荐 3.10.12 https://www.python.org/downloads/

安装 jupyter

参阅:安装使用教程

安装 LangChain

官网:https://python.langchain.com

命令安装

$ pip install langchain
$ conda install langchain -c conda-forge

也可以使用VS code/PyCharm的jupyter插件启动。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

相关文章:

AI 大模型企业应用实战(06)-初识LangChain

LLM大模型与AI应用的粘合剂。 1 langchain是什么以及发展过程 LangChain是一个开源框架&#xff0c;旨在简化使用大型语言模型构建端到端应用程序的过程&#xff0c;也是ReAct(reasonact)论文的落地实现。 2022年10月25日开源 54K star 种子轮一周1000万美金&#xff0c;A轮2…...

JavaScript的学习之旅之初始JS

目录 一、认识三个常见的js代码 二、js写入的第二种方式 三、js里内外部文件 一、认识三个常见的js代码 <script>//写入js位置的第一个地方// 控制浏览器弹出一个警告框alert("这是一个警告");// 在计算机页面输入一个内容&#xff08;写入body中&#xff…...

DataStructure.时间和空间复杂度

时间和空间复杂度 【本节目标】1. 如何衡量一个算法的好坏2. 算法效率3. 时间复杂度3.1 时间复杂度的概念3.2 大O的渐进表示法3.3 推导大O阶方法3.4 常见时间复杂度计算举例3.4.1 示例13.4.2 示例23.4.3 示例33.4.4 示例43.4.5 示例53.4.6 示例63.4.7 示例7 4.空间复杂度4.1 示…...

[Spring Boot]Netty-UDP客户端

文章目录 简述Netty-UDP集成pom引入ClientHandler调用 消息发送与接收在线UDP服务系统调用 简述 最近在一些场景中需要使用UDP客户端进行&#xff0c;所以开始集成新的东西。本文集成了一个基于netty的SpringBoot的简单的应用场景。 Netty-UDP集成 pom引入 <!-- netty --…...

基础C语言知识串串香11☞宏定义与预处理、函数和函数库

​ 六、C语言宏定义与预处理、函数和函数库 6.1 编译工具链 源码.c ——> (预处理)——>预处理过的.i文件——>(编译)——>汇编文件.S——>(汇编)——>目标文件.o->(链接)——>elf可执行程序 预处理用预处理器&#xff0c;编译用编译器&#xff0c;…...

Python 3 函数

Python 3 函数 引言 Python 是一种高级编程语言,以其简洁明了的语法和强大的功能而闻名。在 Python 中,函数是一等公民,扮演着至关重要的角色。它们是组织代码、提高代码复用性和模块化编程的关键。本文将深入探讨 Python 3 中的函数,包括其定义、特性、类型以及最佳实践…...

【Linux详解】冯诺依曼架构 | 操作系统设计 | 斯坦福经典项目Pintos

目录 一. 冯诺依曼体系结构 (Von Neumann Architecture) 注意事项 存储器的意义&#xff1a;缓冲 数据流动示例 二. 操作系统 (Operating System) 操作系统的概念 操作系统的定位与目的 操作系统的管理 系统调用和库函数 操作系统的管理&#xff1a; sum 三. 系统调…...

html做一个画热图的软件

完整示例 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>热图生成器</title><script src"https://cdn.plot.ly/plotly-latest.min.js"></script><style>body …...

软考初级网络管理员__软件单选题

1.在Excel 中&#xff0c;设单元格F1的值为56.323&#xff0c;若在单元格F2中输入公式"TEXT(F1,"&#xffe5;0.00”)”&#xff0c;则单元格F2的值为()。 &#xffe5;56 &#xffe5;56.323 &#xffe5;56.32 &#xffe5;56.00 2.要使Word 能自动提醒英文单…...

数据库新技术【分布式数据库】

文章目录 第一章 概述1.1 基本概念1.1.1 分布式数据库1.1.2 数据管理的透明性1.1.3 可靠性1.1.4 分布式数据库与集中式数据库的区别 1.2 体系结构1.3 全局目录1.4 关系代数1.4.1 基操1.4.2 关系表达式1.4.3 查询树 第二章 分布式数据库的设计2.1 设计策略2.2 分布设计的目标2.3…...

关于运用人工智能帮助自己实现英语能力的有效提升?

# 实验报告 ## 实验目的 - 描述实验的目标&#xff1a;自己可以知道&#xff0c;自己的ai学习方法是否可以有效帮助自己实现自己的学习提升。 预期结果&#xff1a;在自己利用科技对于自己进行学习的过程中&#xff0c;自己的成长速度应该是一个幂指数的增长 ## 文献回顾 根据…...

IPv6知识点整理

IPv6&#xff1a;是英文“Internet Protocol Version 6”&#xff08;互联网协议第6版&#xff09;的缩写&#xff0c;是互联网工程任务组&#xff08;IETF&#xff09;设计的用于替代IPv4的下一代IP协议&#xff0c;其地址数量号称可以为全世界的每一粒沙子编上一个地址 。 国…...

数据赋能(127)——体系:数据标准化——概述、关注焦点

概述 数据标准化是指将数据按照一定的规范和标准进行处理的过程。 数据标准化是属于数据整理过程。 数据标准化的目的在于提高数据的质量、促进数据的共享和交互、降低数据管理的成本&#xff0c;并增强数据的安全性。通过数据标准化&#xff0c;可以使得数据具有统一的格式…...

【 ARMv8/ARMv9 硬件加速系列 3.5.1 -- SVE 谓词寄存器有多少位?】

文章目录 SVE 谓词寄存器(predicate registers)简介SVE 谓词寄存器的位数SVE 谓词寄存器对向量寄存器的控制SVE 谓词寄存器位数计算SVE 谓词寄存器小结 SVE 谓词寄存器(predicate registers)简介 ARMv9的Scalable Vector Extension (SVE) 引入了谓词寄存器&#xff08;Predica…...

Python - 调用函数时检查参数的类型是否合规

前言 阅读本文大概需要3分钟 说明 在python中&#xff0c;即使加入了类型注解&#xff0c;使用注解之外的类型也是不报错的 def test(uid: int):print(uid)test("999")但是我就想要类型不对就直接报错确实可以另辟蹊径&#xff0c;实现报错&#xff0c;似乎有强…...

Python基础面试题解答

Python基础面试题解答 基础语法 1. Python中的变量是如何管理内存的&#xff1f; Python中的变量通过引用计数来管理内存。当一个变量被创建时&#xff0c;会分配一个内存地址&#xff0c;并记录引用次数。当引用次数变为0时&#xff0c;垃圾回收机制会自动释放该内存。 2.…...

MATLAB直方图中bin中心与bin边界之间的转换

要将 bin 中心转换为 bin 边界&#xff0c;请计算 centers 中各连续值之间的中点。 d diff(centers)/2; edges [centers(1)-d(1), centers(1:end-1)d, centers(end)d(end)];要将 bin 边界转换为bin 中心 bincenters binedges(1:end-1)diff(binedges)/2;...

Chromium 开发指南2024 Mac篇-开始编译Chromium(五)

1.引言 在之前的指南中&#xff0c;我们已经详细介绍了在 macOS 上编译和开发 Chromium 的准备工作。您学会了如何安装和配置 Xcode&#xff0c;如何下载和配置 depot_tools&#xff0c;以及如何获取 Chromium 的源代码。通过这些步骤&#xff0c;您的开发环境已经搭建完毕&am…...

2024.06.11校招 实习 内推 面经

绿*泡*泡VX&#xff1a; neituijunsir 交流*裙 &#xff0c;内推/实习/校招汇总表格 1、校招 | 美团2025届北斗计划正式启动&#xff08;内推&#xff09; 校招 | 美团2025届北斗计划正式启动&#xff08;内推&#xff09; 2、实习 | 沃尔沃汽车 Open Day & 实习招聘 …...

linux 免密备份文件到另外一台服务器

简单说&#xff0c;A服务器备份到B服务器。就是将A服务器的文件复制传输到B服务器进行备份。这种场景可以应用到简单的定时器自动备份数据文件。 具体步骤&#xff1a; 1、A服务器上执行以下命令并一直按回车键&#xff0c;然后在/root/.ssh目录中可以看到私钥和公钥。其中id…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...