当前位置: 首页 > news >正文

RSA密码系统的特定密钥泄露攻击与Coppersmith方法的应用

PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

RSA密码系统作为当前最广泛使用的公钥加密算法之一,其安全性依赖于大整数分解问题的困难性。然而,随着计算能力的提高和算法优化,特别是Coppersmith方法的出现,使得在特定条件下对RSA系统进行密钥恢复成为可能。本文将深入探讨Coppersmith方法的原理,以及如何应用于针对RSA的特定密钥泄露攻击。

1. RSA密码系统基础

RSA算法基于一个简单的数论事实:对于大的合数 n n n,其因数分解是计算上不可行的。RSA的安全性依赖于以下两个假设:一是大整数的因数分解问题(CIFP)是困难的;二是计算离散对数问题(CDLP)在模 n n n 下也是困难的。

1.1 RSA算法概述

RSA算法的基本流程包括密钥生成、加密和解密三个过程。其数学基础主要依赖于欧拉定理和模幂运算。通过合理选择密钥参数,可以保证加密和解密过程的正确性和安全性。

1.2 数论基础

RSA算法依赖于数论中的几个基本概念:

  • 素数:只有1和其自身两个因子的正整数。
  • 模运算:给定两个整数 a a a n n n,模运算表示 a a a 除以 n n n 的余数。
  • 欧拉函数:对于一个正整数 n n n,欧拉函数 𝜙( n n n)表示小于 n n n 且与 n n n 互质的正整数个数。

2. RSA的密钥生成过程

RSA密钥生成包括以下步骤:

  1. 随机选择两个大素数 p p p q q q
  2. 计算 n n n= p q pq pq,其中 n n n 是公钥和私钥的模数。
  3. 计算 𝜙( n n n) = ( p p p−1)( q q q−1),欧拉函数值。
  4. 选择一个整数 e e e,使得 1< e e e<𝜙( n n n),且 gcd( e e e,𝜙( n n n))=1,作为公钥指数。
  5. 计算 d d d,使得 d e de de ≡ 1 mod 𝜙( n n n),作为私钥指数。

2.1 公钥与私钥

公钥由 ( n , e ) (n,e) (n,e) 组成,用于加密数据;私钥由 ( n , d ) (n,d) (n,d) 组成,用于解密数据。安全性依赖于 n n n 的因数分解难度以及私钥 d d d 的保密性。

2.2 密钥选择的安全性

选择大素数 p p p q q q 是关键,过小的素数容易被因数分解,从而破解整个RSA系统。此外,选择的 e e e d d d 也需满足特定条件,以确保加密和解密过程的正确性。

3. Coppersmith方法原理

Coppersmith方法是一种解决模 N N N 下多项式方程近似根的方法。对于多项式 f ( x ) f(x) f(x),如果存在一个解 x x x,使得 ∣ f f f( x x x)∣< N 1 / k N^{1/k} N1/k,其中 k k k 是多项式的度数,那么Coppersmith方法可以在多项式时间内找到这样的解。

3.1 Coppersmith方法简介

Coppersmith方法基于Lattice reduction(格约简)和LLL算法(Lenstra–Lenstra–Lovász)的结合,用于找到模数下的小根。其核心思想是将求解模多项式方程的问题转化为一个格中的短向量问题。

3.2 LLL算法

LLL算法是一种用于格约简的多项式时间算法。它可以在格中找到一个近似的最短向量,从而解决一些在数论和密码学中的重要问题。

3.3 应用场景

Coppersmith方法可以应用于以下场景:

  • 小公开指数攻击:当公钥指数 e e e 较小时,可以利用该方法求解相应的方程。
  • 低位泄露攻击:当密钥的低位部分泄露时,可以通过构建相应的多项式方程来恢复整个密钥。

4. RSA特定密钥泄露攻击

4.1 攻击背景

在实际应用中,RSA密钥可能因为某些原因部分泄露,例如私钥指数 d d d 的部分位或者加密后的密文的一部分。这种情况下,攻击者可以利用Coppersmith方法尝试恢复完整的密钥。

4.2 攻击模型

假设攻击者已知私钥指数 d d d 的低位 d L d_{L} dL,可以构建如下多项式:
f ( x ) = x e − m m o d n f(x) = x^e - m \mod n f(x)=xemmodn
其中, m m m 是已知的密文, e e e 是公钥指数。

4.3 应用Coppersmith方法

利用Coppersmith方法,攻击者可以找到满足以下条件的 x x x
∣ f ( x ) ∣ < n 1 / k |f(x)| < n^{1/k} f(x)<n1/k
如果 x x x 的值能够被确定,那么可以通过 x e m o d n = m x^e \mod n = m xemodn=m 来解密密文。

4.4 具体步骤

  1. 信息收集:获取泄露的密钥信息,如私钥指数的低位 d L d_L dL
  2. 多项式构建:基于已知信息构建多项式 f ( x ) f(x) f(x)
  3. 格构造:根据Coppersmith方法,构造对应的格。
  4. 应用LLL算法:利用LLL算法对格进行约简,找到短向量。
  5. 解方程:通过解短向量对应的多项式方程,找到近似根,从而恢复密钥。

5. 攻击流程图

开始
密钥信息泄露
构建多项式方程
应用Coppersmith方法
找到整数解?
解密密文/恢复密钥
攻击失败
结束

6. RSA安全性分析

6.1 增强密钥安全性

Coppersmith方法的应用表明,即使只有部分密钥信息泄露,也可能对RSA系统的安全性构成威胁。为了增强RSA系统的安全性,可以采取以下措施:

  • 增加密钥长度:使用更大的素数 p p p q q q,增加 n n n 的位数,提高因数分解的难度。
  • 选择合适的公钥指数:避免使用过小的公钥指数 e e e,选择较大的 e e e 以提高安全性。
  • 保护私钥:加强私钥的存储和管理,避免泄露。

6.2 后量子密码学

随着量子计算的发展,传统的RSA系统面临更大的安全威胁。后量子密码学旨在开发对量子计算机攻击具有抗性的加密算法,以确保未来的信息安全。

6.3 安全参数选择

选择适当的安全参数对于RSA系统的安全性至关重要。需要根据当前的计算能力和已知攻击方法,调整密钥长度和算法参数,以确保系统的安全性。


Coppersmith方法为密码学研究提供了一种新的视角,尤其是在处理模多项式方程时。尽管它为攻击者提供了一种可能的攻击手段,但也促进了密码学界对现有加密算法的安全性进行更深入的分析和改进。

在实际应用中,建议定期更新加密系统,采用最新的安全标准和算法,确保数据和通信的安全性。同时,密钥管理和信息保护也需要得到足够的重视,以防止由于密钥泄露而导致的安全问题。

通过对Coppersmith方法及其在RSA特定密钥泄露攻击中的应用的深入分析,可以更好地理解RSA系统的潜在风险,并采取相应的措施进行防范,保障信息安全。

PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

相关文章:

RSA密码系统的特定密钥泄露攻击与Coppersmith方法的应用

PrimiHub一款由密码学专家团队打造的开源隐私计算平台&#xff0c;专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。 RSA密码系统作为当前最广泛使用的公钥加密算法之一&#xff0c;其安全性依赖于大整数分解问题的困难性。然而&#xff0c;随着计…...

从零开始精通Onvif之音视频流传输

&#x1f4a1; 如果想阅读最新的文章&#xff0c;或者有技术问题需要交流和沟通&#xff0c;可搜索并关注微信公众号“希望睿智”。 概述 Onvif协议的核心作用之一&#xff0c;是定义了如何通过网络访问和控制IP摄像机和其他视频设备。Onvif协议不仅涉及设备发现、设备管理&…...

CentOS 7、Debian、Ubuntu,这些是什么意思

CentOS 7、Debian、Ubuntu 都是基于 Linux 内核的操作系统&#xff0c;它们各自有不同的特性和用途。以下是对它们的详细解释&#xff1a; CentOS 7 CentOS&#xff08;Community ENTerprise Operating System&#xff09; 是一个基于开源的 Linux 发行版。CentOS 7 是 CentOS …...

安装Flask

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 大多数Python包都使用pip实用工具安装&#xff0c;使用Virtualenv创建虚拟环境时会自动安装pip。激活虚拟环境后&#xff0c;pip 所在的路径会被添加…...

OSPF开销、协议优先级、定时器(华为)

#交换设备 OSPF开销值 如果没有定义OSPF接口的开销值&#xff0c;OSPF会根据该接口的带宽自动计算其开销值。 计算公式&#xff1a; 接口开销 带宽参考值 / 接口带宽 &#xff08;取整数部分&#xff0c;结果小于1时取1&#xff09;通过改变带宽参考值可以间接改变接口的开…...

接口与实现-常用实用类-Java

接口与实现 接口 使用关键字interface来定义一个接口&#xff0c;接口的定义分为接口声明和接口体&#xff0c;例如&#xff1a; interface Com{ ....... } 接口声明 interface 接口的名字 接口体 接口体中的抽象方法和常量 接口体中所有抽象方法的访问权限一定都是pu…...

【CSS in Depth 2 精译】1.5 渐进式增强

文章目录 1.5 渐进式增强1.5.1 利用层叠规则实现渐进式增强1.5.2 渐进式增强的选择器1.5.3 利用 supports() 实现特性查询启用浏览器实验特性 1.5 渐进式增强 要用好 CSS 这样一门不断发展演进中的语言&#xff0c;其中一个重要的因素就是要与时俱进&#xff0c;及时了解哪些功…...

k8s集群master故障恢复笔记

剔除故障节点 kubectl drain master故障节点 kubectl delete node master故障节点 kubeadm reset rm -rf /etc/kubernetes/manifests mkdir -p /etc/kubernetes/pki/etcd/ 从master其他节点拷 scp /etc/kubernetes/pki/ca.crt ca.key sa.key sa.pub front-proxy-ca.crt …...

昇思25天学习打卡营第5天|网络构建

一、简介&#xff1a; 神经网络模型是由神经网络层和Tensor操作构成的&#xff0c;mindspore.nn提供了常见神经网络层的实现&#xff0c;在MindSpore中&#xff0c;Cell类是构建所有网络的基类&#xff08;这个类和pytorch中的modul类是一样的作用&#xff09;&#xff0c;也是…...

Python开发日记--手撸加解密小工具(2)

目录 1. UI设计和代码生成 2.运行代码查看效果 3.小结 1. UI设计和代码生成 昨天讨论到每一类算法设计为一个Tab&#xff0c;利用的是TabWidget&#xff0c;那么接下来就要在每个Tab里设计算法必要的参数了&#xff0c;这里我们会用到组件有Label、PushButton、TextEdit、Ra…...

一文看懂TON链

一、背景与起源 The Open Network (TON) 的故事起始于2018年&#xff0c;当时全球知名的即时通讯软件Telegram计划推出自己的区块链平台及加密货币Gram&#xff0c;旨在构建一个既安全又高速的分布式网络&#xff0c;用以支持下一代去中心化应用程序(DApps)和数字资产。然而&a…...

(南京观海微电子)——TFT LCD压合技术

TFT-LCD TFT-LCD open cell后段制程主要指的是将驱动IC和PCB压合至液晶板上&#xff0c;这个制程主要由三个步骤组成&#xff1a; 1.ACF (Anisotropic Conductive Film)的涂布。 在液晶板需要压合驱动IC的地方涂布ACF&#xff0c;ACF又称异方性导电胶膜&#xff0c;特点是上下…...

神经网络实战1-Sequential

链接&#xff1a;https://pytorch.org/docs/1.8.1/generated/torch.nn.Sequential.html#torch.nn.Sequential 完成这样一个网络模型 第一步新建一个卷积层 self.conv1Conv2d(3,32,5)#第一步将33232输出为32通道&#xff0c;卷积核5*5 注意一下&#xff1a;输出通道数等于卷积…...

Java中如何优化数据库查询性能?

Java中如何优化数据库查询性能&#xff1f; 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将深入探讨在Java中如何优化数据库查询性能&#xff0c;这是…...

从0开发一个Chrome插件:用户反馈与更新 Chrome 插件

前言 这是《从0开发一个Chrome插件》系列的第二十二篇文章,也是最终篇,本系列教你如何从0去开发一个Chrome插件,每篇文章都会好好打磨,写清楚我在开发过程遇到的问题,还有开发经验和技巧。 专栏: 从0开发一个Chrome插件:什么是Chrome插件?从0开发一个Chrome插件:开发…...

Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接

在进行参数化读取时发现一个问题&#xff1a; 发现问题&#xff1a; requests.exceptions.ConnectionError: HTTPConnectionPool(hostlocalhost, port8081): Max retries exceeded with url: /jwshoplogin/user/update_information.do (Caused by NewConnectionError(<url…...

基于Java作业管理系统设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;…...

使用Kafka框架发送和接收消息(Java示例)

Kafka是一个开源的分布式流处理平台&#xff0c;以其在大数据和实时处理领域的广泛应用而闻名。以下是Kafka的关键特性以及它在消息传输方面的优势&#xff1a; 高吞吐量与低延迟&#xff1a;Kafka能够每秒处理数百万条消息&#xff0c;具有极低的延迟&#xff0c;这使得它非常…...

高可用电商支付架构设计方案

高可用电商支付架构设计 在现代电商业务中&#xff0c;支付过程是其中至关重要的一环&#xff0c;一个高可用、安全稳定的支付架构不仅可以提高整个系统的可靠性和扩展性&#xff0c;降低维护成本&#xff0c;还可以优化用户体验&#xff0c;增加用户黏性。 本文将提出一种高…...

PriorityQueue详解(含动画演示)

目录 PriorityQueue详解1、PriorityQueue简介2、PriorityQueue继承体系3、PriorityQueue数据结构PriorityQueue类属性注释完全二叉树、大顶堆、小顶堆的概念☆PriorityQueue是如何利用数组存储小顶堆的&#xff1f;☆利用数组存储完全二叉树的好处&#xff1f; 4、PriorityQueu…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...