神经网络实战1-Sequential

链接:https://pytorch.org/docs/1.8.1/generated/torch.nn.Sequential.html#torch.nn.Sequential

完成这样一个网络模型
第一步新建一个卷积层
self.conv1=Conv2d(3,32,5)#第一步将33232输出为32通道,卷积核5*5
注意一下:输出通道数等于卷积核个数,与输入通道数无关

注意shape式子中的dilation,代表内核元素之间的间距。默认值:1,dilation参数用于指定卷积核内部元素之间的间距。当dilation参数为0时,表示普通的卷积操作,即卷积核内部的元素是相邻的,没有间隔。区别主要体现在dilation参数大于1时,即空洞卷积(dilated convolution)的情况下,此时卷积核内的元素之间会有间隔,从而扩大了卷积核的感受野。。
当dilation参数为1时,也表示普通的卷积操作,即卷积核内部的元素是相邻的,没有间隔。
空洞卷积(dilated convolution)是一种卷积操作,通过在卷积核中插入间隔(洞)来增加感受野(receptive field),而不增加参数数量。相比于普通卷积,空洞卷积在保持参数量相对较小的情况下可以有效地扩大网络感受野。这种操作在处理具有大尺寸输入和大跨度特征的情况下特别有用。
奇数卷积核 直接用kernel_size // 2计算
在卷积神经网络中,卷积核的大小通常是一个正整数,例如3x3、5x5等。当卷积核的大小是奇数时,意味着卷积核的中心位置是准确地位于核的中心的一个单元的位置上。
使用奇数大小的卷积核有一些优点,其中之一是因为有一个确切的中心位置,可以更容易地确定卷积核是如何应用于输入图像的。此外,奇数大小的卷积核也有助于确保输出的特征图中的像素位置是对称分布的。
在一些情况下,为了方便地计算卷积核的填充(padding),可以利用奇数卷积核的特点直接使用 kernel_size // 2 这样的计算来确定卷积核中心相对于卷积核边缘的偏移量。这种方式常用于对称地填充卷积操作,以保持输入和输出的大小一致。

可以这样估算
也可以
奇数卷积核把中心格子对准图片第一个格子,卷积核在格子外有两层就padding=2,设置padding是为了提高边缘利用率
然后依次按图进行构造
构建一个网络

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linearclass Tudui(nn.Module):def __init__(self) -> None:super().__init__()self.conv1=Conv2d(3,32,5,padding=2)#第一步将3*32*32输出为32通道,卷积核5*5self.maxpool1=MaxPool2d(2)#池化核2x2self.conv2=Conv2d(32,32,5,padding=2)self.maxpool2=MaxPool2d(2)self.conv3=Conv2d(32,64,5,padding=2)self.maxpool3=MaxPool2d(2)self.flatten=Flatten()self.linear=Linear(1024,64)self.linear2=Linear(64,10)def forward(self, x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.linear(x)x = self.linear2(x)return xtudui=Tudui()
print(tudui)#检验网络是否搭建成功了
input=torch.ones((64,3,32,32))
output=tudui(input)
print(output.shape)
Linear时自己算出来的,算不出的话
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linearclass Tudui(nn.Module):def __init__(self) -> None:super().__init__()self.conv1=Conv2d(3,32,5,padding=2)#第一步将3*32*32输出为32通道,卷积核5*5self.maxpool1=MaxPool2d(2)#池化核2x2self.conv2=Conv2d(32,32,5,padding=2)self.maxpool2=MaxPool2d(2)self.conv3=Conv2d(32,64,5,padding=2)self.maxpool3=MaxPool2d(2)self.flatten=Flatten()def forward(self, x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)# x = self.linear(x)# x = self.linear2(x)return xtudui=Tudui()
print(tudui)#检验网络是否搭建成功了
input=torch.ones((64,3,32,32))
output=tudui(input)
print(output.shape)
看一下output,在flatten后的输出是1024个
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialclass Tudui(nn.Module):def __init__(self) -> None:super().__init__()self.sequential=Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.sequential(x)return xtudui=Tudui()
print(tudui)#检验网络是否搭建成功了
input=torch.ones((64,3,32,32))
output=tudui(input)
print(output.shape)
这是另一个写法可以看到这个 写法比上面优雅的多,输出也会更整齐

添加入tensorboard

可以看到网络结构


如此可以看到一些需要的参数
相关文章:
神经网络实战1-Sequential
链接:https://pytorch.org/docs/1.8.1/generated/torch.nn.Sequential.html#torch.nn.Sequential 完成这样一个网络模型 第一步新建一个卷积层 self.conv1Conv2d(3,32,5)#第一步将33232输出为32通道,卷积核5*5 注意一下:输出通道数等于卷积…...
Java中如何优化数据库查询性能?
Java中如何优化数据库查询性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨在Java中如何优化数据库查询性能,这是…...
从0开发一个Chrome插件:用户反馈与更新 Chrome 插件
前言 这是《从0开发一个Chrome插件》系列的第二十二篇文章,也是最终篇,本系列教你如何从0去开发一个Chrome插件,每篇文章都会好好打磨,写清楚我在开发过程遇到的问题,还有开发经验和技巧。 专栏: 从0开发一个Chrome插件:什么是Chrome插件?从0开发一个Chrome插件:开发…...
Failed to establish a new connection: [WinError 10061] 由于目标计算机积极拒绝,无法连接
在进行参数化读取时发现一个问题: 发现问题: requests.exceptions.ConnectionError: HTTPConnectionPool(hostlocalhost, port8081): Max retries exceeded with url: /jwshoplogin/user/update_information.do (Caused by NewConnectionError(<url…...
基于Java作业管理系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…...
使用Kafka框架发送和接收消息(Java示例)
Kafka是一个开源的分布式流处理平台,以其在大数据和实时处理领域的广泛应用而闻名。以下是Kafka的关键特性以及它在消息传输方面的优势: 高吞吐量与低延迟:Kafka能够每秒处理数百万条消息,具有极低的延迟,这使得它非常…...
高可用电商支付架构设计方案
高可用电商支付架构设计 在现代电商业务中,支付过程是其中至关重要的一环,一个高可用、安全稳定的支付架构不仅可以提高整个系统的可靠性和扩展性,降低维护成本,还可以优化用户体验,增加用户黏性。 本文将提出一种高…...
PriorityQueue详解(含动画演示)
目录 PriorityQueue详解1、PriorityQueue简介2、PriorityQueue继承体系3、PriorityQueue数据结构PriorityQueue类属性注释完全二叉树、大顶堆、小顶堆的概念☆PriorityQueue是如何利用数组存储小顶堆的?☆利用数组存储完全二叉树的好处? 4、PriorityQueu…...
python 字符串驻留机制
偶然发现一个python字符串的现象: >>> a 123_abc >>> b 123_abc >>> a is b True >>> c abc#123 >>> d abc#123 >>> c is d False 这是为什么呢,原来它们的id不一样。 >>> id(a)…...
express+vue 在线五子棋(一)
示例 在线体验地址五子棋,记得一定要再拉个人才能对战 本期难点 1、完成了五子棋的布局,判断游戏结束 2、基本的在线对战 3、游戏配套im(这个im的实现,请移步在线im) 下期安排 1、每步的倒计时设置 2、黑白棋分配由玩家自定义 3、新增旁观…...
AI 大模型企业应用实战(06)-初识LangChain
LLM大模型与AI应用的粘合剂。 1 langchain是什么以及发展过程 LangChain是一个开源框架,旨在简化使用大型语言模型构建端到端应用程序的过程,也是ReAct(reasonact)论文的落地实现。 2022年10月25日开源 54K star 种子轮一周1000万美金,A轮2…...
JavaScript的学习之旅之初始JS
目录 一、认识三个常见的js代码 二、js写入的第二种方式 三、js里内外部文件 一、认识三个常见的js代码 <script>//写入js位置的第一个地方// 控制浏览器弹出一个警告框alert("这是一个警告");// 在计算机页面输入一个内容(写入body中ÿ…...
DataStructure.时间和空间复杂度
时间和空间复杂度 【本节目标】1. 如何衡量一个算法的好坏2. 算法效率3. 时间复杂度3.1 时间复杂度的概念3.2 大O的渐进表示法3.3 推导大O阶方法3.4 常见时间复杂度计算举例3.4.1 示例13.4.2 示例23.4.3 示例33.4.4 示例43.4.5 示例53.4.6 示例63.4.7 示例7 4.空间复杂度4.1 示…...
[Spring Boot]Netty-UDP客户端
文章目录 简述Netty-UDP集成pom引入ClientHandler调用 消息发送与接收在线UDP服务系统调用 简述 最近在一些场景中需要使用UDP客户端进行,所以开始集成新的东西。本文集成了一个基于netty的SpringBoot的简单的应用场景。 Netty-UDP集成 pom引入 <!-- netty --…...
基础C语言知识串串香11☞宏定义与预处理、函数和函数库
六、C语言宏定义与预处理、函数和函数库 6.1 编译工具链 源码.c ——> (预处理)——>预处理过的.i文件——>(编译)——>汇编文件.S——>(汇编)——>目标文件.o->(链接)——>elf可执行程序 预处理用预处理器,编译用编译器,…...
Python 3 函数
Python 3 函数 引言 Python 是一种高级编程语言,以其简洁明了的语法和强大的功能而闻名。在 Python 中,函数是一等公民,扮演着至关重要的角色。它们是组织代码、提高代码复用性和模块化编程的关键。本文将深入探讨 Python 3 中的函数,包括其定义、特性、类型以及最佳实践…...
【Linux详解】冯诺依曼架构 | 操作系统设计 | 斯坦福经典项目Pintos
目录 一. 冯诺依曼体系结构 (Von Neumann Architecture) 注意事项 存储器的意义:缓冲 数据流动示例 二. 操作系统 (Operating System) 操作系统的概念 操作系统的定位与目的 操作系统的管理 系统调用和库函数 操作系统的管理: sum 三. 系统调…...
html做一个画热图的软件
完整示例 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>热图生成器</title><script src"https://cdn.plot.ly/plotly-latest.min.js"></script><style>body …...
软考初级网络管理员__软件单选题
1.在Excel 中,设单元格F1的值为56.323,若在单元格F2中输入公式"TEXT(F1,"¥0.00”)”,则单元格F2的值为()。 ¥56 ¥56.323 ¥56.32 ¥56.00 2.要使Word 能自动提醒英文单…...
数据库新技术【分布式数据库】
文章目录 第一章 概述1.1 基本概念1.1.1 分布式数据库1.1.2 数据管理的透明性1.1.3 可靠性1.1.4 分布式数据库与集中式数据库的区别 1.2 体系结构1.3 全局目录1.4 关系代数1.4.1 基操1.4.2 关系表达式1.4.3 查询树 第二章 分布式数据库的设计2.1 设计策略2.2 分布设计的目标2.3…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
