当前位置: 首页 > news >正文

2025秋招NLP算法面试真题(一)-史上最全Transformer面试题

史上最全Transformer面试题

  1. Transformer为何使用多头注意力机制?(为什么不使用一个头)
  2. Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?
    (注意和第一个问题的区别)
  3. Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?
  4. 为什么在进行softmax之前需要对attention进行scaled(为什么除以dk的平方根),并使用公式推导进行讲解
  5. 在计算attention score的时候如何对padding做mask操作?
  6. 为什么在进行多头注意力的时候需要对每个head进行降维?(可以参考上面一个问题)
  7. 大概讲一下Transformer的Encoder模块?
  8. 为何在获取输入词向量之后需要对矩阵乘以embedding size的开方?意义是什么?
  9. 简单介绍一下Transformer的位置编码?有什么意义和优缺点?
  10. 你还了解哪些关于位置编码的技术,各自的优缺点是什么?
  11. 简单讲一下Transformer中的残差结构以及意义。
  12. 为什么transformer块使用LayerNorm而不是BatchNorm?LayerNorm 在Transformer的位置是哪里?
  13. 简答讲一下BatchNorm技术,以及它的优缺点。
  14. 简单描述一下Transformer中的前馈神经网络?使用了什么激活函数?相关优缺点?
  15. Encoder端和Decoder端是如何进行交互的?(在这里可以问一下关于seq2seq的attention知识)
  16. Decoder阶段的多头自注意力和encoder的多头自注意力有什么区别?(为什么需要decoder自注意力需要进行 sequence mask)
  17. Transformer的并行化提现在哪个地方?Decoder端可以做并行化吗?
  18. 简单描述一下wordpiece model 和 byte pair encoding,有实际应用过吗?
  19. Transformer训练的时候学习率是如何设定的?Dropout是如何设定的,位置在哪里?Dropout 在测试的需要有什么需要注意的吗?
  20. 引申一个关于bert问题,bert的mask为何不学习transformer在attention处进行屏蔽score的技巧?

相关文章:

2025秋招NLP算法面试真题(一)-史上最全Transformer面试题

史上最全Transformer面试题 Transformer为何使用多头注意力机制?(为什么不使用一个头)Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘? (注意和第一个问题的区别&#…...

基于STM32的智能家居安防系统

目录 引言环境准备智能家居安防系统基础代码实现:实现智能家居安防系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统实现4.4 用户界面与数据可视化应用场景:智能家居安防管理与优化问题解决方案与优化收尾与总结 1. 引言 智能家居安防系统通过使…...

React+TS前台项目实战(十二)-- 全局常用组件Toast封装,以及rxjs和useReducer的使用

文章目录 前言Toast组件1. 功能分析2. 代码详细注释(1)建立一个reducer.ts文件,用于管理状态数据(2)自定义一个清除定时器的hook(3)使用rxjs封装全局变量管理hook(4)在to…...

總結光學(完)

參考: 陈曦<<光学讲义>>http://ithatron.phys.tsinghua.edu.cn/downloads/optics.pdf 1 波动光学 最简单的一种波是平面波。........... 一个波的波前是指相位相同的点构成的面。波的传播方向垂直于波面。 我们在此将讨论的光波特指波长远大于原子尺度又远小于…...

线程C++

#include <thread> #include <chrono> #include <cmath> #include <mutex> #include <iostream> using namespace std;mutex mtx; void threadCommunicat() {int ans 0;while (ans<3){mtx.lock();//上锁cout << "ans" <…...

DAMA学习笔记(二)-数据治理

1.引言 数据治理&#xff08;Data Governance&#xff0c;DG&#xff09;的定义是在管理数据资产过程中行使权力和管控&#xff0c;包括计划、监控和实施。在所有组织中&#xff0c;无论是否有正式的数据治理职能&#xff0c;都需要对数据进行决策。建立了正式的数据治理规程及…...

07-appium常用操作

一、press_keycode 1&#xff09;方法说明 press_keycode方法是appium的键盘相关函数&#xff0c;可以实现键盘的相关操作&#xff0c;比如返回、按键、音量调节等等。也可以使用keyevent方法&#xff0c;功能与press_keycode方法类似。 常见按键编码&#xff1a;https://www.…...

使用lua开发apisix自定义插件并发布

接到老大需求&#xff1a;需要对cookie进行操作&#xff0c;遂查询apisix的自带插件&#xff0c;发现有&#xff0c;但不满足&#xff0c;于是自己开发了一个插件并部署&#xff0c;把开发部署流程写在这里打个日志怕以后忘掉。 一、需求 插件很简单&#xff0c;就是在reques…...

43 mysql insert select 的实现

前言 我们这里 来探讨一下 insert into $fields select $fields from $table; 的相关实现, 然后 大致来看一下 为什么 他能这么快 按照 我的思考, 应该里里面有 批量插入才对, 但是 调试结果 发现令我有一些意外 呵呵 果然 只有调试才是唯一的真理 测试数据表如下 CREATE…...

趣味学Python,快速上手神奇的itertools库!

大家好&#xff0c;我是菜哥&#xff01; 在学习Python编程的过程中&#xff0c;我们经常会使用到一些非常有用的标准库&#xff0c;它们不仅可以让我们的代码更加简洁高效&#xff0c;还能帮我们解决很多复杂的问题。Python标准库为我们提供了大量实用的工具和模块&#xff0c…...

富文本编辑器CKEditor

介绍 富文本编辑器不同于文本编辑器,它提供类似于 Microsoft Word 的编辑功能 在Django中,有可以现成的富文本三方模块django-ckeditor,具体安排方式: pip install django-ckeditor==6.5.1官网:Django CKEditor — Django CKEditor 6.7.0 documentation 使用方式 创建项…...

【机器学习】音乐大模型的深入探讨——当机器有了创意,是机遇还是灾难?

&#x1f440;国内外音乐大模型基本情况&#x1f440; ♥概述♥ ✈✈✈如FreeCompose、一术科技等&#xff0c;这些企业专注于开发人工智能驱动的语音、音效和音乐生成工具&#xff0c;致力于利用核心技术驱动文化产业升级。虽然具体公司未明确提及&#xff0c;但可以预见的是…...

机器人学习和研究的物质基础包含哪些内容?

为啥写这个&#xff1f; 在很多博客里面提及物质基础&#xff0c;没想到询问的也非常多&#xff0c;写一篇详细一点的。 之前的故事 不合格且失败机器人讲师个人理解的自身课程成本情况-CSDN博客 迷失自我无缘多彩世界-2024--CSDN博客 物质基础与情绪稳定的关系-CSDN博客 …...

Python中的交互式GUI开发:与MATLAB uicontrol的比较

Python中的交互式GUI开发 Python中的交互式GUI开发&#xff1a;与MATLAB uicontrol的比较**Python GUI开发库****Tkinter****PyQt/PySide** **与MATLAB的比较****总结** Python中的交互式GUI开发&#xff1a;与MATLAB uicontrol的比较 在MATLAB中&#xff0c;uicontrol 是一个…...

js 实现将后端请求来的 Blob 数据保存到用户选择的任意目录

js实现将后端请求来的 Blob 数据保存到用户选择的任意目录 实现方式 实现方式 实现方式是使用 window 的 showSaveFilePicker 方法。Window 接口的 showSaveFilePicker() 方法用于显示一个文件选择器&#xff0c;以允许用户保存一个文件。可以选择一个已有文件覆盖保存&#xf…...

【LLM之RAG】RAT论文阅读笔记

研究背景 近年来&#xff0c;大型语言模型&#xff08;LLMs&#xff09;在各种自然语言推理任务上取得了显著进展&#xff0c;尤其是在结合大规模模型和复杂提示策略&#xff08;如链式思维提示&#xff08;CoT&#xff09;&#xff09;时。然而&#xff0c;LLMs 在推理的事实…...

windows anaconda 安装 Labelme

安装 # 创建环境 conda create -n labelme python3.6 #激活环境 conda activate labelme # 安装依赖 conda install pyqt conda install pillow # 安装labelme conda install labelme3.16.2 # 启动labelme labelme右键选择标注类型&#xff0c;从上到下为多边形&#xff08;常…...

Python实现基于深度学习的电影推荐系统

Python实现基于深度学习的电影推荐系统 项目背景 在数字化娱乐时代&#xff0c;用户面临着海量的电影选择。为了帮助用户找到符合个人口味的佳片&#xff0c;MovieRecommendation项目提供了一个基于深度学习的个性化电影推荐系统。该系统利用深度学习技术&#xff0c;根据用户…...

C++ (week9):Git

文章目录 1.git介绍2.git安装3.git配置4.获取自己的SSH公钥5.新建仓库6.邀请开发者7.克隆远程仓库到本地8.在本地进行开发9.本地项目推送到远程仓库10.git的工作原理11.分支管理(1)合作开发的方式(2)分支管理(3)分支合并的原理、冲突管理 12.git 与 svn 的区别13.设置alias别名…...

Seaborn:数据可视化的强大工具

文章目录 引言Seaborn的原理1. 底层结构2. 数据集成3. 图形类型 Seaborn的使用1. 安装与导入2. 数据加载与探索3. 绘制图形分布图关系图分类图 4. 图形定制5. 导出图形 结论 引言 在数据分析和科学计算领域&#xff0c;数据可视化是一个至关重要的步骤。它能够帮助我们更直观地…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...