2025秋招NLP算法面试真题(一)-史上最全Transformer面试题
史上最全Transformer面试题
- Transformer为何使用多头注意力机制?(为什么不使用一个头)
- Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?
(注意和第一个问题的区别) - Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?
- 为什么在进行softmax之前需要对attention进行scaled(为什么除以dk的平方根),并使用公式推导进行讲解
- 在计算attention score的时候如何对padding做mask操作?
- 为什么在进行多头注意力的时候需要对每个head进行降维?(可以参考上面一个问题)
- 大概讲一下Transformer的Encoder模块?
- 为何在获取输入词向量之后需要对矩阵乘以embedding size的开方?意义是什么?
- 简单介绍一下Transformer的位置编码?有什么意义和优缺点?
- 你还了解哪些关于位置编码的技术,各自的优缺点是什么?
- 简单讲一下Transformer中的残差结构以及意义。
- 为什么transformer块使用LayerNorm而不是BatchNorm?LayerNorm 在Transformer的位置是哪里?
- 简答讲一下BatchNorm技术,以及它的优缺点。
- 简单描述一下Transformer中的前馈神经网络?使用了什么激活函数?相关优缺点?
- Encoder端和Decoder端是如何进行交互的?(在这里可以问一下关于seq2seq的attention知识)
- Decoder阶段的多头自注意力和encoder的多头自注意力有什么区别?(为什么需要decoder自注意力需要进行 sequence mask)
- Transformer的并行化提现在哪个地方?Decoder端可以做并行化吗?
- 简单描述一下wordpiece model 和 byte pair encoding,有实际应用过吗?
- Transformer训练的时候学习率是如何设定的?Dropout是如何设定的,位置在哪里?Dropout 在测试的需要有什么需要注意的吗?
- 引申一个关于bert问题,bert的mask为何不学习transformer在attention处进行屏蔽score的技巧?
相关文章:
2025秋招NLP算法面试真题(一)-史上最全Transformer面试题
史上最全Transformer面试题 Transformer为何使用多头注意力机制?(为什么不使用一个头)Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘? (注意和第一个问题的区别&#…...
基于STM32的智能家居安防系统
目录 引言环境准备智能家居安防系统基础代码实现:实现智能家居安防系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统实现4.4 用户界面与数据可视化应用场景:智能家居安防管理与优化问题解决方案与优化收尾与总结 1. 引言 智能家居安防系统通过使…...
React+TS前台项目实战(十二)-- 全局常用组件Toast封装,以及rxjs和useReducer的使用
文章目录 前言Toast组件1. 功能分析2. 代码详细注释(1)建立一个reducer.ts文件,用于管理状态数据(2)自定义一个清除定时器的hook(3)使用rxjs封装全局变量管理hook(4)在to…...
總結光學(完)
參考: 陈曦<<光学讲义>>http://ithatron.phys.tsinghua.edu.cn/downloads/optics.pdf 1 波动光学 最简单的一种波是平面波。........... 一个波的波前是指相位相同的点构成的面。波的传播方向垂直于波面。 我们在此将讨论的光波特指波长远大于原子尺度又远小于…...
线程C++
#include <thread> #include <chrono> #include <cmath> #include <mutex> #include <iostream> using namespace std;mutex mtx; void threadCommunicat() {int ans 0;while (ans<3){mtx.lock();//上锁cout << "ans" <…...
DAMA学习笔记(二)-数据治理
1.引言 数据治理(Data Governance,DG)的定义是在管理数据资产过程中行使权力和管控,包括计划、监控和实施。在所有组织中,无论是否有正式的数据治理职能,都需要对数据进行决策。建立了正式的数据治理规程及…...
07-appium常用操作
一、press_keycode 1)方法说明 press_keycode方法是appium的键盘相关函数,可以实现键盘的相关操作,比如返回、按键、音量调节等等。也可以使用keyevent方法,功能与press_keycode方法类似。 常见按键编码:https://www.…...
使用lua开发apisix自定义插件并发布
接到老大需求:需要对cookie进行操作,遂查询apisix的自带插件,发现有,但不满足,于是自己开发了一个插件并部署,把开发部署流程写在这里打个日志怕以后忘掉。 一、需求 插件很简单,就是在reques…...
43 mysql insert select 的实现
前言 我们这里 来探讨一下 insert into $fields select $fields from $table; 的相关实现, 然后 大致来看一下 为什么 他能这么快 按照 我的思考, 应该里里面有 批量插入才对, 但是 调试结果 发现令我有一些意外 呵呵 果然 只有调试才是唯一的真理 测试数据表如下 CREATE…...
趣味学Python,快速上手神奇的itertools库!
大家好,我是菜哥! 在学习Python编程的过程中,我们经常会使用到一些非常有用的标准库,它们不仅可以让我们的代码更加简洁高效,还能帮我们解决很多复杂的问题。Python标准库为我们提供了大量实用的工具和模块,…...
富文本编辑器CKEditor
介绍 富文本编辑器不同于文本编辑器,它提供类似于 Microsoft Word 的编辑功能 在Django中,有可以现成的富文本三方模块django-ckeditor,具体安排方式: pip install django-ckeditor==6.5.1官网:Django CKEditor — Django CKEditor 6.7.0 documentation 使用方式 创建项…...
【机器学习】音乐大模型的深入探讨——当机器有了创意,是机遇还是灾难?
👀国内外音乐大模型基本情况👀 ♥概述♥ ✈✈✈如FreeCompose、一术科技等,这些企业专注于开发人工智能驱动的语音、音效和音乐生成工具,致力于利用核心技术驱动文化产业升级。虽然具体公司未明确提及,但可以预见的是…...
机器人学习和研究的物质基础包含哪些内容?
为啥写这个? 在很多博客里面提及物质基础,没想到询问的也非常多,写一篇详细一点的。 之前的故事 不合格且失败机器人讲师个人理解的自身课程成本情况-CSDN博客 迷失自我无缘多彩世界-2024--CSDN博客 物质基础与情绪稳定的关系-CSDN博客 …...
Python中的交互式GUI开发:与MATLAB uicontrol的比较
Python中的交互式GUI开发 Python中的交互式GUI开发:与MATLAB uicontrol的比较**Python GUI开发库****Tkinter****PyQt/PySide** **与MATLAB的比较****总结** Python中的交互式GUI开发:与MATLAB uicontrol的比较 在MATLAB中,uicontrol 是一个…...
js 实现将后端请求来的 Blob 数据保存到用户选择的任意目录
js实现将后端请求来的 Blob 数据保存到用户选择的任意目录 实现方式 实现方式 实现方式是使用 window 的 showSaveFilePicker 方法。Window 接口的 showSaveFilePicker() 方法用于显示一个文件选择器,以允许用户保存一个文件。可以选择一个已有文件覆盖保存…...
【LLM之RAG】RAT论文阅读笔记
研究背景 近年来,大型语言模型(LLMs)在各种自然语言推理任务上取得了显著进展,尤其是在结合大规模模型和复杂提示策略(如链式思维提示(CoT))时。然而,LLMs 在推理的事实…...
windows anaconda 安装 Labelme
安装 # 创建环境 conda create -n labelme python3.6 #激活环境 conda activate labelme # 安装依赖 conda install pyqt conda install pillow # 安装labelme conda install labelme3.16.2 # 启动labelme labelme右键选择标注类型,从上到下为多边形(常…...
Python实现基于深度学习的电影推荐系统
Python实现基于深度学习的电影推荐系统 项目背景 在数字化娱乐时代,用户面临着海量的电影选择。为了帮助用户找到符合个人口味的佳片,MovieRecommendation项目提供了一个基于深度学习的个性化电影推荐系统。该系统利用深度学习技术,根据用户…...
C++ (week9):Git
文章目录 1.git介绍2.git安装3.git配置4.获取自己的SSH公钥5.新建仓库6.邀请开发者7.克隆远程仓库到本地8.在本地进行开发9.本地项目推送到远程仓库10.git的工作原理11.分支管理(1)合作开发的方式(2)分支管理(3)分支合并的原理、冲突管理 12.git 与 svn 的区别13.设置alias别名…...
Seaborn:数据可视化的强大工具
文章目录 引言Seaborn的原理1. 底层结构2. 数据集成3. 图形类型 Seaborn的使用1. 安装与导入2. 数据加载与探索3. 绘制图形分布图关系图分类图 4. 图形定制5. 导出图形 结论 引言 在数据分析和科学计算领域,数据可视化是一个至关重要的步骤。它能够帮助我们更直观地…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
