windows anaconda 安装 Labelme
安装
# 创建环境
conda create -n labelme python=3.6
#激活环境
conda activate labelme
# 安装依赖
conda install pyqt
conda install pillow
# 安装labelme
conda install labelme=3.16.2
# 启动labelme
labelme

右键选择标注类型,从上到下为多边形(常用)、矩形、圆、线和点。

标注完之后点击save进行保存,注意:最好把标注完的json文件与原图存放在一个目录下,这样在后期查看的时候可以看到原图与标注区域的叠加,而不单单是原图。
标注json转换dataset
得到json文件之后,要将其转化成数据集使用,这里涉及到labelme源码的更改
首先,找到labelme的json_to_dataset.py
找到anaconda的安装位置,例如安装在D盘,然后找到下面说的具体位置:D:\Anaconda\envs\labelme\Lib\site-packages\labelme\cli,进入之后会发现有几个python source file,打开json_to_dataset.py,将代码做如下更改:
import argparse
import json
import os
import os.path as osp
import warningsimport PIL.Image
import yamlfrom labelme import utils
import base64def main():warnings.warn("This script is aimed to demonstrate how to convert the\n""JSON file to a single image dataset, and not to handle\n""multiple JSON files to generate a real-use dataset.")parser = argparse.ArgumentParser()parser.add_argument('json_file')parser.add_argument('-o', '--out', default=None)args = parser.parse_args()json_file = args.json_fileif args.out is None:# out_dir = osp.basename(json_file).replace('.', '_')# out_dir = osp.join(osp.dirname(json_file))out_dir = json_fileelse:out_dir = args.outif not osp.exists(out_dir):os.mkdir(out_dir)count = os.listdir(json_file)for i in range(0, len(count)):path = os.path.join(json_file, count[i])if os.path.isfile(path) and path.endswith("json"):with open(path) as data:data = json.load(data)if data['imageData']:imageData = data['imageData']else:imagePath = os.path.join(os.path.dirname(path), data['imagePath'])with open(imagePath, 'rb') as f:imageData = f.read()imageData = base64.b64encode(imageData).decode('utf-8')img = utils.img_b64_to_arr(imageData)label_name_to_value = {'_background_': 0}for shape in data['shapes']:label_name = shape['label']if label_name in label_name_to_value:label_value = label_name_to_value[label_name]else:label_value = len(label_name_to_value)label_name_to_value[label_name] = label_value# label_values must be denselabel_values, label_names = [], []for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):label_values.append(lv)label_names.append(ln)assert label_values == list(range(len(label_values)))lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)captions = ['{}: {}'.format(lv, ln)for ln, lv in label_name_to_value.items()]lbl_viz = utils.draw_label(lbl, img, captions)out_child_dir = osp.basename(count[i]).replace('.', '_')out_child_dir = osp.join(out_dir, out_child_dir)if not osp.exists(out_child_dir):os.mkdir(out_child_dir)PIL.Image.fromarray(img).save(osp.join(out_child_dir, 'img.png'))# PIL.Image.fromarray(lbl).save(osp.join(out_child_dir, 'label.png'))utils.lblsave(osp.join(out_child_dir, 'label.png'), lbl)PIL.Image.fromarray(lbl_viz).save(osp.join(out_child_dir, 'label_viz.png'))with open(osp.join(out_child_dir, 'label_names.txt'), 'w') as f:for lbl_name in label_names:f.write(lbl_name + '\n')warnings.warn('info.yaml is being replaced by label_names.txt')info = dict(label_names=label_names)with open(osp.join(out_child_dir, 'info.yaml'), 'w') as f:yaml.safe_dump(info, f, default_flow_style=False)print('Saved to: %s' % out_child_dir)if __name__ == '__main__':main()
将之前标注好的json文件单独提取出来,放在一个目录下(C:\Users\16343\Desktop\box\close\json),然后进入批量处理的环境中,也就是执行把jaso->dataset的目录:
回退到D:\Anaconda\envs\labelme\Scripts
labelme_json_to_dataset.exe C:\Users\16343\Desktop\box\close\json -o C:\Users\16343\Desktop\box\close\json

-o 指定输出文件路径,默认为输入文件路径
在C:\Users\16343\Desktop\box\close\json得到多个文件夹,每个文件夹内的文件如下

读取标注
上述文件中的label 是Mask图像, 显示彩图, 但实际是单通道位深为8的png图像, 也就是单通道图像, 并不是常见的RGB三通道

opencv读取会改变图像的像素值和格式,因此用用PIL.Image.open()读取.像素值在 [0, 255] 之间, 矩阵仍然是二维单通道
import PIL.Image as Image
import torchimage = Image.open("0_json/0_json/label.png")
image = torch.Tensor(np.array(image))


mask中的数值代表了label_names.txt的序列,也就是0代表_background_,2代表label_names.txt中的5,也就是我们的标签值。
相关文章:
windows anaconda 安装 Labelme
安装 # 创建环境 conda create -n labelme python3.6 #激活环境 conda activate labelme # 安装依赖 conda install pyqt conda install pillow # 安装labelme conda install labelme3.16.2 # 启动labelme labelme右键选择标注类型,从上到下为多边形(常…...
Python实现基于深度学习的电影推荐系统
Python实现基于深度学习的电影推荐系统 项目背景 在数字化娱乐时代,用户面临着海量的电影选择。为了帮助用户找到符合个人口味的佳片,MovieRecommendation项目提供了一个基于深度学习的个性化电影推荐系统。该系统利用深度学习技术,根据用户…...
C++ (week9):Git
文章目录 1.git介绍2.git安装3.git配置4.获取自己的SSH公钥5.新建仓库6.邀请开发者7.克隆远程仓库到本地8.在本地进行开发9.本地项目推送到远程仓库10.git的工作原理11.分支管理(1)合作开发的方式(2)分支管理(3)分支合并的原理、冲突管理 12.git 与 svn 的区别13.设置alias别名…...
Seaborn:数据可视化的强大工具
文章目录 引言Seaborn的原理1. 底层结构2. 数据集成3. 图形类型 Seaborn的使用1. 安装与导入2. 数据加载与探索3. 绘制图形分布图关系图分类图 4. 图形定制5. 导出图形 结论 引言 在数据分析和科学计算领域,数据可视化是一个至关重要的步骤。它能够帮助我们更直观地…...
图解注意力
图解注意力 Part #2: The Illustrated Self-Attention 在文章前面的部分,我们展示了这张图片来展示自注意力被应用于正在处理单词"it"的一层中: 在本节中,我们将看看这是如何完成的。请注意,我们将以一种试图理解单…...
Typora Markdown编辑器 for Mac v1.8.10 安装
Mac分享吧 文章目录 效果一、准备工作二、开始安装1、双击运行软件,将其从左侧拖入右侧文件夹中,等待安装完毕2. 应用程序显示软件图标,表示安装成功 三、运行调试1、修改主题2、显示文档列表,如下图3、查看版本信息 **安装完成&…...
代码随想录算法训练营Day46|动态规划:121.买卖股票的最佳时机I、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III
买卖股票的最佳时机I 121. 买卖股票的最佳时机 - 力扣(LeetCode) 之前用贪心算法做过相同的题,这次考虑使用动态规划来完成。 dp[i]表示前i天的最大利润 我们已知每一天的价格price[i],则dp[i]为每一天的价格price[i]减去当初…...
hive on spark 记录
环境: hadoop 2.7.2 spark-without-hadoop 2.4.6 hive 2.3.4 hive-site.xml <property><name>hive.execution.engine</name><value>spark</value> </property> <property><name>spark.yarn.jars</name>&l…...
【计算机网络体系结构】计算机网络体系结构实验-DHCP实验
服务器ip地址 2. 服务器地址池 3. 客户端ip 4. ping Ipconfig...
攻防世界-pdf
方法一:打开是pdf格式的文件,里面有一张图,题目提示图下面什么都没有?emmm用chrom打开pdf——ctrlf搜索flag,里面是有东西的,ctrla复制就可以了。 方法二:题目提示图下面什么都没有,…...
关于后端幂等性问题分析与总结
后端幂等性(Idempotency)是指对系统执行一次操作或多次执行相同的操作,其结果始终如一。在分布式系统和API设计中,这是一个关键概念,因为它能保证用户无论请求被路由到哪个节点,多次执行相同的请求都不会导…...
2024广东省职业技能大赛云计算赛项实战——容器云平台搭建
容器云平台搭建 前言 容器镜像使用的是斗学培训平台提供的镜像包,这东西网上都没有,一堆人要,我是靠自己想的方法获取到了,也不敢给。你们可以通过在这个网站申请环境进行操作https://ncc.douxuedu.com/ 虚拟机使用的是自行创建…...
手持弹幕LED滚动字幕屏夜店表白手灯接机微信抖音小程序开源版开发
手持弹幕LED滚动字幕屏夜店表白手灯接机微信抖音小程序开源版开发 专业版 插件版 手持弹幕小程序通常提供多种功能,以便用户在不同的场合如夜店、表白、接机等使用。以下是一些常见的功能列表: 文本输入: 输入要显示的文字内容,…...
红队内网攻防渗透:内网渗透之内网对抗:代理通讯篇无外网或不可达SockS全协议规则配置C2正反向上线解决方案
红队内网攻防渗透 1. 内网代理通讯1.1 网络不可达实战环境模拟1.1.1 CS代理技术-SockS配置-网络不可达-通讯解决1.1.1.1 反向shell上线入口点主机1.1.1.2 入口点CS搭建sokcs4代理1.1.1.3 本地使用Proxifier访问代理1.1.1 CS代理技术-正反向监听-网络不可达-C2上线1.1.1.4 正向s…...
PHP学习总结-入门篇
PHP简介 PHP (Hypertext Preprocessor),即“超文本预处理器”。PHP 是一种创建动态交互性站点的强有力的服务器端脚本语言。PHP语法吸收了C语言、Java和Perl的特点,便于学习。PHP 是开源免费的,主要适用于Web开发领域,使用广泛。…...
IDEA Plugins中搜索不到插件解决办法
IDEA中搜不到插件有三种解决方案: 设置HTTP选项,可以通过File->Settings->Plugins->⚙->HTTP Proxy Settings进行设置 具体可参考这篇博文:IDEA Plugins中搜索不到插件解决办法本地安装,ile->Settings->Plugin…...
SpringBootWeb 篇-入门了解 Vue 前端工程的创建与基本使用
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 基于脚手架创建前端工程 1.1 基于 Vue 开发前端项目的环境要求 1.2 前端工程创建的方式 1.2.1 基于命令的方式来创建前端工程 1.2.2 使用图形化来创建前端工程 1.…...
折线统计图 初级
此为折线统计图的初级题目。 本次的题目较难,菜鸡请退出。 4. 下图显示了甲、乙两台电脑的价格以及它们已使用的年数,从图中可以知道( )。 15. 妈妈去菜市场买菜,走到半路遇到一位熟人聊了一会儿,突然发现忘了带钱。于是马上回…...
最新下载:XmanagerXShell【软件附加安装教程】
相信大家都认同支持IPv6:最近越来越多的公司和国家都采用了IPv6,Xmanager的最新版本v5也加入支持这个功能,无论你是同时使用IPv4和IPv6网络或者完全的IPv6网络,Xmanager 5都可完全满足你的要求,使用MIT Kerberos认证…...
Coursera耶鲁大学金融课程:Financial Markets 笔记Week 02
Financial Markets 本文是学习 https://www.coursera.org/learn/financial-markets-global这门课的学习笔记 这门课的老师是耶鲁大学的Robert Shiller https://en.wikipedia.org/wiki/Robert_J._Shiller Robert James Shiller (born March 29, 1946)[4] is an American econom…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
