当前位置: 首页 > news >正文

Django Aggregation 使用指南

Django Aggregation 使用指南

在构建Django应用时,我们经常需要对数据库中的数据进行汇总或聚合操作。例如,计算某个字段的平均值、最大值或最小值。这篇文章将详细介绍如何在Django中使用聚合查询,并结合实例进行说明。

聚合查询简介

Django提供了强大的数据库查询API,可以创建、检索、更新和删除单个对象。除此之外,有时我们需要通过汇总或聚合对象集合来获取派生值。本文将介绍如何使用Django查询来生成和返回聚合值。

示例模型

我们以以下模型为例,这些模型用于跟踪一系列在线书店的库存:

from django.db import modelsclass Author(models.Model):name = models.CharField(max_length=100)age = models.IntegerField()class Publisher(models.Model):name = models.CharField(max_length=300)class Book(models.Model):name = models.CharField(max_length=300)pages = models.IntegerField()price = models.DecimalField(max_digits=10, decimal_places=2)rating = models.FloatField()authors = models.ManyToManyField(Author)publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)pubdate = models.DateField()class Store(models.Model):name = models.CharField(max_length=300)books = models.ManyToManyField(Book)

常见聚合查询示例

以下是一些常见的聚合查询示例:

  1. 计算所有书籍的总数:

    Book.objects.count()
    
  2. 计算某出版社出版的书籍总数:

    Book.objects.filter(publisher__name="BaloneyPress").count()
    
  3. 计算所有书籍的平均价格:

    from django.db.models import Avg
    Book.objects.aggregate(Avg("price"))
    
  4. 计算所有书籍的最高价格:

    from django.db.models import Max
    Book.objects.aggregate(Max("price"))
    
  5. 计算每个出版社的书籍数量:

    from django.db.models import Count
    pubs = Publisher.objects.annotate(num_books=Count("book"))
    
  6. 按书籍数量排序的前5个出版社:

    pubs = Publisher.objects.annotate(num_books=Count("book")).order_by("-num_books")[:5]
    

聚合方法详解

Django提供了两种生成聚合值的方法:

  1. 对整个查询集生成汇总值:

    from django.db.models import Avg
    Book.objects.aggregate(Avg("price"))
    

    这将计算所有书籍价格的平均值。

  2. 对查询集中的每个对象生成独立的汇总值:

    from django.db.models import Count
    books = Book.objects.annotate(num_authors=Count("authors"))
    

    这将为每本书添加一个字段,表示其作者的数量。

高级用法

  1. 结合多个聚合:

    from django.db.models import Avg, Max, Min
    Book.objects.aggregate(Avg("price"), Max("price"), Min("price"))
    
  2. 基于注释值进行过滤:

    Book.objects.annotate(num_authors=Count("authors")).filter(num_authors__gt=1)
    
  3. 注释和过滤的顺序:

    注释和过滤的顺序对查询结果有很大影响。例如:

    Publisher.objects.annotate(num_books=Count("book")).filter(book__rating__gt=3.0)
    

    与:

    Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count("book"))
    

    这两种查询的结果可能会有所不同,因为注释和过滤的顺序不同。

结合具体实例

我们通过以下代码实现了对Twitter数据的聚合查询:

from django.db.models import Count, Avg
from .models import TwAuthors, TwTweets# 获取每个作者的平均推文数
authors = TwAuthors.objects.annotate(avg_tweets=Avg('twtweets__id'))# 获取推文数量最多的前5个作者
top_authors = TwAuthors.objects.annotate(num_tweets=Count('twtweets')).order_by('-num_tweets')[:5]

这段代码展示了如何利用Django的聚合查询功能,获取每个作者的平均推文数,并找出推文数量最多的前5个作者。

annotateaggregate:区别

在Django中,annotateaggregate是用于生成汇总值的两种不同方法,主要区别在于它们的作用范围和结果类型。

1. annotate

  • 作用范围:对每个对象单独计算汇总值。
  • 返回结果:返回一个新的QuerySet,每个对象都会附带一个额外的属性,该属性是通过计算汇总值生成的。
  • 使用场景:当你需要对查询集中的每个对象进行汇总计算时使用。例如,你可能想知道每本书有多少个作者。
示例代码:
from django.db.models import Count# 查询每本书的作者数量
books = Book.objects.annotate(num_authors=Count('authors'))
for book in books:print(book.name, book.num_authors)

2. aggregate

  • 作用范围:对整个QuerySet进行汇总计算。
  • 返回结果:返回一个字典,键是汇总值的名称,值是计算的汇总值。
  • 使用场景:当你需要对整个查询集进行汇总计算时使用。例如,你可能想知道所有书籍的平均价格。
示例代码:
from django.db.models import Avg# 计算所有书籍的平均价格
average_price = Book.objects.aggregate(Avg('price'))
print(average_price)

结合实例

假设我们有一个包含书籍信息的数据库,并且我们想获取一些汇总信息:

使用annotate

我们想知道每个出版社出版的书籍数量:

from django.db.models import Countpublishers = Publisher.objects.annotate(num_books=Count('book'))
for publisher in publishers:print(publisher.name, publisher.num_books)

每个Publisher对象将会有一个num_books属性,表示该出版社出版的书籍数量。

使用aggregate

我们想知道所有书籍的最高价格、最低价格和平均价格:

from django.db.models import Avg, Max, Minprice_summary = Book.objects.aggregate(max_price=Max('price'),min_price=Min('price'),avg_price=Avg('price')
)
print(price_summary)

返回的price_summary是一个字典,包含了所有书籍的最高价格、最低价格和平均价格。

结论

Django的聚合查询功能非常强大,可以帮助我们高效地从数据库中提取所需的汇总数据。通过合理使用这些功能,我们可以大大简化数据统计和分析的工作。

希望这篇文章能帮助你更好地理解和使用Django的聚合查询。如果你有任何问题或建议,欢迎留言讨论。

相关文章:

Django Aggregation 使用指南

Django Aggregation 使用指南 在构建Django应用时,我们经常需要对数据库中的数据进行汇总或聚合操作。例如,计算某个字段的平均值、最大值或最小值。这篇文章将详细介绍如何在Django中使用聚合查询,并结合实例进行说明。 聚合查询简介 Dja…...

嵌入式学习——Linux操作系统——文件编程练习

1.使用fread和fwrite方式完成任意普通文件的拷贝功能。 模拟 文件下载 #include <stdio.h>void do_copy(FILE *fp_s,FILE *fp_d) {char buf[100] {0};int ret;while (ret fread(buf,sizeof(char),sizeof(buf),fp_s))fwrite(buf,sizeof(char),ret,fp_d); }//./a.out sr…...

用JavaScript实现了一个简单的图像坐标点标注工具

这段代码实现了一个简单的图像标注工具&#xff0c;允许用户在加载的图像上进行点选标注&#xff0c;并且通过右键确认一个点序列来形成一个多边形。 标注效果如下 实现代码如下 <!DOCTYPE html> <html lang"en"> <head><meta charset"U…...

Pytorch深度解析:Transformer嵌入层源码逐行解读

前言 本部分博客需要先阅读博客&#xff1a; 《Transformer实现以及Pytorch源码解读&#xff08;一&#xff09;-数据输入篇》 作为知识储备。 Embedding使用方式 如下面的代码中所示&#xff0c;embedding一般是先实例化nn.Embedding(vocab_size, embedding_dim)。实例化的…...

HSP_10章 Python面向对象编程oop_基础部分

文章目录 P107 类与实例的关系1.类与实例的关系示意图2.类与实例的代码分析 P109 对象形式和传参机制1. 类与对象的区别和联系2. 属性/成员变量3. 类的定义和使用4. 对象的传递机制 P110 对象的布尔值P111 成员方法1. 基本介绍2. 成员方法的定义和基本使用3.注意事项和使用细节…...

JavaWeb系列十七: jQuery选择器 上

jQuery选择器 jQuery基本选择器jquery层次选择器基础过滤选择器内容过滤选择器可见度过滤选择器 选择器是jQuery的核心, 在jQuery中, 对事件处理, 遍历 DOM和Ajax 操作都依赖于选择器jQuery选择器的优点 $(“#id”) 等价于 document.getElementById(“id”);$(“tagName”) 等价…...

Gone框架介绍30 - 使用`goner/gin`提供Web服务

gone是可以高效开发Web服务的Golang依赖注入框架 github地址&#xff1a;https://github.com/gone-io/gone 文档地址&#xff1a;https://goner.fun/zh/ 使用goner/gin提供Web服务 文章目录 使用goner/gin提供Web服务注册相关的Goners编写Controller挂载路由路由处理函数io.Rea…...

Lipowerline5.0 雷达电力应用软件下载使用

1.配网数据处理分析 针对配网线路点云数据&#xff0c;优化了分类算法&#xff0c;支持杆塔、导线、交跨线、建筑物、地面点和其他线路的自动分类&#xff1b;一键生成危险点报告和交跨报告&#xff1b;还能生成点云数据采集航线和自主巡检航线。 获取软件安装包联系邮箱:289…...

STM32学习之一:什么是STM32

目录 1.什么是STM32 2.STM32命名规则 3.STM32外设资源 4. STM32的系统架构 5. 从0到1搭建一个STM32工程 学习stm32已经很久了&#xff0c;因为种种原因&#xff0c;也有很久一段时间没接触过stm32了。等我捡起来的时候&#xff0c;发现很多都已经忘记了&#xff0c;重新捡…...

AI绘画Stable Diffusion 超强一键去除图片中的物体,免费使用!

大家好&#xff0c;我是设计师阿威 在生成图像时总有一些不完美的小瑕疵&#xff0c;比如多余的物体或碍眼的水印&#xff0c;它们破坏了图片的美感。但别担心&#xff0c;今天我们将介绍一款神奇的工具——sd-webui-cleaner&#xff0c;它可以帮助我们使用Stable Diffusion轻…...

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据…...

Github上前十大开源Rust项目

在github上排名前十的Rust开源项目整理出来与大家共享&#xff0c;以当前的Star数为准。 Deno Deno 是 V8 上的安全 TypeScript 运行时。Deno 是一个建立在V8、Rust和Tokio之上的 JavaScript、TypeScript 和 WebAssembly 的运行时环境&#xff0c;具有自带安全的设置和出色的开…...

硬件开发笔记(二十):AD21导入外部下载的元器件原理图库、封装库和3D模型

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/139707771 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

竞赛选题 python opencv 深度学习 指纹识别算法实现

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python opencv 深度学习 指纹识别算法实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;4分创新点&#xff1a;4分 该项目较为新颖…...

RK3568开发笔记(三):瑞芯微RK3588芯片介绍,入手开发板的核心板介绍

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/139905873 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

EtherCAT主站IgH解析(二)-- 如何将Igh移植到Linux/Windows/RTOS等多操作系统

版权声明&#xff1a;本文为本文为博主原创文章&#xff0c;转载请注明出处 https://www.cnblogs.com/wsg1100 如有错误&#xff0c;欢迎指正。 本文简单介绍如何将 igh 移植到 zephyr、freertos、rtems、rtthread等RTOS &#xff0c;甚至 windows 上。 ##前言 目前&#xff0…...

ansible copy模块参选选项

copy模块用于将文件从ansible控制节点&#xff08;管理主机&#xff09;或者远程主机复制到远程主机上。其操作类似于scp&#xff08;secure copy protocol&#xff09;。 关键参数标红。 参数&#xff1a; src:&#xff08;source&#xff1a;源&#xff09; 要复制到远程…...

展厅设计主要的六大要素

1、从创意开始 展示设计的开始必须创意在先。根据整体的风格思路进行创意&#xff0c;首先要考虑的是主体的造型、大小高度位置以及它和周围展厅的关系。另外其他道具设计制作与运作方式也必须在创意中有明确的体现。 2、平面感 平面感是指对展示艺术设计平面图纸审美和功能两个…...

【数据结构与算法】最小生成树,Prim算法,Kruskal算法 详解

最小生成树的实际应用背景。 最节省经费的前提下&#xff0c;在n个城市之间建立通信联络网。 Kruskal算法&#xff08;基于并查集&#xff09; void init() {for (int i 1; i < n; i) {pre[i] i;} }ll root(ll a) {ll i a;while (pre[i] ! i) {i pre[i];}return i p…...

【启明智显产品分享】Model3工业级HMI芯片详解系列专题(三):安全、稳定、高防护

芯片作为电子设备的核心部件&#xff0c;&#xff0c;根据不同的应用领域被分为不同等级。工业级芯片适用于工业自动化、控制系统和仪器仪表等领域&#xff0c;对芯片的安全、稳定、防护能力等等有着较高的要求。这些芯片往往需要具备更宽的工业温度范围&#xff0c;能够在更恶…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...

理想汽车5月交付40856辆,同比增长16.7%

6月1日&#xff0c;理想汽车官方宣布&#xff0c;5月交付新车40856辆&#xff0c;同比增长16.7%。截至2025年5月31日&#xff0c;理想汽车历史累计交付量为1301531辆。 官方表示&#xff0c;理想L系列智能焕新版在5月正式发布&#xff0c;全系产品力有显著的提升&#xff0c;每…...