目标跟踪——KCF源码用python实现
from numpy.fft import fft2, ifft2, fftshift
import cv2
import numpy as npclass HOG:def __init__(self, winSize):""":param winSize: 检测窗口的大小"""self.winSize = winSizeself.blockSize = (8, 8)self.blockStride = (4, 4)self.cellSize = (4, 4)self.nBins = 9self.hog = cv2.HOGDescriptor(winSize, self.blockSize, self.blockStride,self.cellSize, self.nBins)def get_feature(self, image):winStride = self.winSizew, h = self.winSizew_block, h_block = self.blockStridew = w//w_block - 1h = h//h_block - 1# 计算给定图像的HOG特征描述子,一个n*1的特征向量hist = self.hog.compute(img=image, winStride=winStride, padding=(0, 0))return hist.reshape(w, h, 36).transpose(2, 1, 0) # 交换轴的顺序def show_hog(self, hog_feature):c, h, w = hog_feature.shapefeature = hog_feature.reshape(2, 2, 9, h, w).sum(axis=(0, 1))grid = 16hgrid = grid // 2img = np.zeros((h*grid, w*grid))for i in range(h):for j in range(w):for k in range(9):x = int(10 * feature[k, i, j] * np.cos(x=np.pi / 9 * k))y = int(10 * feature[k, i, j] * np.sin(x=np.pi / 9 * k))cv2.rectangle(img=img, pt1=(j*grid, i*grid), pt2=((j + 1) * grid, (i + 1) * grid),color=(255, 255, 255))x1 = j * grid + hgrid - xy1 = i * grid + hgrid - yx2 = j * grid + hgrid + xy2 = i * grid + hgrid + ycv2.line(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(255, 255, 255), thickness=1)cv2.imshow("img", img)cv2.waitKey(0)class Tracker:def __init__(self):# 超参数设置self.max_patch_size = 256self.padding = 2.5self.sigma = 0.6self.lambdar = 0.0001self.update_rate = 0.012self.gray_feature = Falseself.debug = False# 算法变量定义self.scale_h = 0.self.scale_w = 0.self.ph = 0self.pw = 0self.hog = HOG((self.pw, self.pw))self.alphaf = Noneself.x = Noneself.roi = Nonedef first_frame(self, image, roi):"""对视频的第一帧进行标记,更新tracer的参数:param image: 第一帧图像:param roi: 第一帧图像的初始ROI元组:return: None"""x1, y1, w, h = roicx = x1 + w // 2cy = y1 + h // 2roi = (cx, cy, w, h)# 确定Patch的大小,并在此Patch中提取HOG特征描述子scale = self.max_patch_size / float(max(w, h))self.ph = int(h * scale) // 4 * 4 + 4self.pw = int(w * scale) // 4 * 4 + 4self.hog = HOG((self.pw, self.ph))# 在矩形框的中心采样、提取特征x = self.get_feature(image, roi)y = self.gaussian_peak(x.shape[2], x.shape[1])self.alphaf = self.train(x, y, self.sigma, self.lambdar)self.x = xself.roi = roidef update(self, image):"""对给定的图像,重新计算其目标的位置:param image::return:"""# 包含矩形框信息的四元组(min_x, min_y, w, h)cx, cy, w, h = self.roimax_response = -1 # 最大响应值for scale in [0.95, 1.0, 1.05]:# 将ROI值处理为整数roi = map(int, (cx, cy, w * scale, h * scale))z = self.get_feature(image, roi) # tuple(36, h, w)# 计算响应responses = self.detect(self.x, z, self.sigma)height, width = responses.shapeif self.debug:cv2.imshow("res", responses)cv2.waitKey(0)idx = np.argmax(responses)res = np.max(responses)if res > max_response:max_response = resdx = int((idx % width - width / 2) / self.scale_w)dy = int((idx / width - height / 2) / self.scale_h)best_w = int(w * scale)best_h = int(h * scale)best_z = z# 更新矩形框的相关参数self.roi = (cx + dx, cy + dy, best_w, best_h)# 更新模板self.x = self.x * (1 - self.update_rate) + best_z * self.update_ratey = self.gaussian_peak(best_z.shape[2], best_z.shape[1])new_alphaf = self.train(best_z, y, self.sigma, self.lambdar)self.alphaf = self.alphaf * (1 - self.update_rate) + new_alphaf * self.update_ratecx, cy, w, h = self.roireturn cx - w // 2, cy - h // 2, w, hdef get_feature(self, image, roi):"""对特征进行采样:param image::param roi: 包含矩形框信息的四元组(min_x, min_y, w, h):return:"""# 对矩形框做2.5倍的Padding处理cx, cy, w, h = roiw = int(w*self.padding)//2*2h = int(h*self.padding)//2*2x = int(cx - w//2)y = int(cy - h//2)# 矩形框所覆盖的距离sub_img = image[y:y+h, x:x+w, :]resized_img = cv2.resize(src=sub_img, dsize=(self.pw, self.ph))if self.gray_feature:feature = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY)feature = feature.reshape(1, self.ph, self.pw)/255.0 - 0.5else:feature = self.hog.get_feature(resized_img)if self.debug:self.hog.show_hog(feature)# Hog特征的通道数、高估、宽度fc, fh, fw = feature.shapeself.scale_h = float(fh)/hself.scale_w = float(fw)/w# 两个二维数组,前者(fh,1),后者(1,fw)hann2t, hann1t = np.ogrid[0:fh, 0:fw]hann1t = 0.5 * (1 - np.cos(2 * np.pi * hann1t / (fw - 1)))hann2t = 0.5 * (1 - np.cos(2 * np.pi * hann2t / (fh - 1)))# 一个fh x fw的矩阵hann2d = hann2t * hann1tfeature = feature * hann2dreturn featuredef gaussian_peak(self, w, h):""":param w::param h::return: 一个w*h的高斯矩阵"""output_sigma = 0.125sigma = np.sqrt(w * h) / self.padding * output_sigmasyh, sxh = h//2, w//2y, x = np.mgrid[-syh:-syh + h, -sxh:-sxh + w]x = x + (1 - w % 2) / 2.y = y + (1 - h % 2) / 2.g = 1. / (2. * np.pi * sigma ** 2) * np.exp(-((x ** 2 + y ** 2) / (2. * sigma ** 2)))return gdef kernel_correlation(self, x1, x2, sigma):"""核化的相关滤波操作:param x1::param x2::param sigma: 高斯参数sigma:return:"""# 转换到傅里叶空间fx1 = fft2(x1)fx2 = fft2(x2)# \hat{x^*} \otimes \hat{x}',x*的共轭转置与x'的乘积tmp = np.conj(fx1) * fx2# 离散傅里叶逆变换转换回真实空间idft_rbf = ifft2(np.sum(tmp, axis=0))# 将零频率分量移到频谱中心。idft_rbf = fftshift(idft_rbf)# 高斯核的径向基函数d = np.sum(x1 ** 2) + np.sum(x2 ** 2) - 2.0 * idft_rbfk = np.exp(-1 / sigma ** 2 * np.abs(d) / d.size)return kdef train(self, x, y, sigma, lambdar):"""原文所给参考train函数:param x::param y::param sigma::param lambdar::return:"""k = self.kernel_correlation(x, x, sigma)return fft2(y) / (fft2(k) + lambdar)def detect(self, x, z, sigma):"""原文所给参考detect函数:param x::param z::param sigma::return:"""k = self.kernel_correlation(x, z, sigma)# 傅里叶逆变换的实部return np.real(ifft2(self.alphaf * fft2(k)))def track(video_path):cap = cv2.VideoCapture(video_path)tracker = Tracker()ok, frame = cap.read()if not ok:print("error reading video")exit(-1)roi = cv2.selectROI("tracking", frame, False, False)# roi = (218, 302, 148, 108)tracker.first_frame(frame, roi)while cap.isOpened():ok, frame = cap.read()if not ok:breakx, y, w, h = tracker.update(frame)cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 1)cv2.imshow('tracking', frame)c = cv2.waitKey(1) & 0xFFif c == 27 or c == ord('q'):breakcap.release()cv2.destroyAllWindows()if __name__ == '__main__':video_path = r'D:\desk\Work\API\fpga\siamfc-pytorch\video\444.mp4'track(video_path=video_path)
参考链接
https://blog.csdn.net/qq_59109986/article/details/127892628
相关文章:
目标跟踪——KCF源码用python实现
from numpy.fft import fft2, ifft2, fftshift import cv2 import numpy as npclass HOG:def __init__(self, winSize):""":param winSize: 检测窗口的大小"""self.winSize winSizeself.blockSize (8, 8)self.blockStride (4, 4)self.cellSiz…...
前端 转换笔记
<!DOCTYPE html> <html> <head> <meta charset"utf-8" /> <title>转换</title> <style> .box{ /* 盒子摆在body的正中间 */ position: absolut…...
个人开发笔记
开发笔记 开发常见问题Vue开发中页面flex滚动布局,内容置顶问题功能快捷键 开发常见问题 Vue开发中页面flex滚动布局,内容置顶问题 直接操作路由: const router createRouter({routes: routes,history: createWebHashHistory(),scrollBeha…...
pdf压缩,pdf压缩在线,pdf文件太大怎么变小
在数字化时代,PDF文档因其跨平台、保持原样、易于阅读和打印等特点,成为了我们日常工作和生活中不可或缺的一部分。然而,随着PDF文件的不断累积,存储空间逐渐变得紧张,特别是在处理大量大型PDF文件时,如何有…...
Go 如何使用指针灵活操作内存
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
【面试干货】Java中的++操作符与线程安全性
【面试干货】Java中的操作符与线程安全性 1、什么是线程安全性?2、 操作符的工作原理3、 操作符与线程安全性4、如何确保线程安全?5、 结论 💖The Begin💖点点关注,收藏不迷路💖 在Java编程中,操…...
NLP学习与踩坑记录(持续更新版)
NLP学习与踩坑记录(持续更新版) OSError: Cant load tokenizer for bert-base-uncased.google.protobuf.message.DecodeError: Error parsing messageDeepspeed 本博客记录了博主在学习NLP时遇到了各种各样的问题与解决方法,供大家参考&#…...
Java也能做OCR!SpringBoot 整合 Tess4J 实现图片文字识别
文章目录 1. 环境准备1.1 安装 Tesseract OCR 引擎1.2 引入 Tess4J 依赖 2. 创建 Spring Boot 项目2.1 初始化项目2.2 目录结构 3. 编写 OCR 功能代码3.1 创建服务层3.2 创建控制器层 4. 配置 Tesseract 语言包5. 运行和测试5.1 启动 Spring Boot 应用5.2 使用 Postman 或 cURL…...
微信小程序常用标签及其用法
大家好,我是linzi,今天我来给大家分享一下微信小程序一些个常用的标签及其用法 1. <view> 标签 <view> 标签是小程序中最常用的标签之一,用于组织和布局页面上的内容,类似于HTML中的 <div> 标签。 <view …...
开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统
我在抖音上发布了视频 https://www.douyin.com/video/7382446337482099977 下面是主要内容介绍 【视频标题:】开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统 #智能体 #FastGPT #客服系统-----------【视频行业分类:】<3C数码>-…...
Flink集群运行模式
我们了解了flink的一个集群的一个基础架构,包括里面核心的一些组件,比如说job manager,task manager等一些组件的一些主要的一些组成。本节课程开始我们学习flink的一个集群部署模式。首先我们来看一下flink集群部署模式究竟应该有哪一些种类…...
XSS 安全漏洞介绍及修复方案
简介 XSS(Cross Site Scripting)是一种常见的 Web 安全漏洞,攻击者通过在网页中注入恶意脚本代码,使得网页在用户端执行这些脚本,从而窃取用户信息或者进行其他恶意操作。为了防止 XSS 攻击,可以使用正则表…...
基于STM32的智能仓库管理系统
目录 引言环境准备智能仓库管理系统基础代码实现:实现智能仓库管理系统 4.1 数据采集模块4.2 数据处理与分析4.3 通信模块实现4.4 用户界面与数据可视化应用场景:仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通过使用STM32嵌…...
LeetCode —— 只出现一次的数字
只出现一次的数字 I 本题依靠异或运算符的特性,两个相同数据异或等于0,数字与0异或为本身即可解答。代码如下: class Solution { public:int singleNumber(vector<int>& nums) {int ret 0;for (auto e : nums){ret ^ e;}return ret;} };只出…...
python遍历文件夹中所有图片
python遍历文件夹中的图片-CSDN博客 这个是之前的版本,现在这个版本会更好,直接进来就在列表中 path glob.glob("1/*.jpg")print(path)print(len(path))path_img glob.glob("1/*.jpg")path_img.extend(path)print(len(path_img))…...
速盾:DDOS能打死高防ip吗?
DDoS攻击是一种利用大量计算机或设备发起的分布式拒绝服务攻击。它的目标是通过发送大量流量或请求,使目标服务器或网络资源无法正常工作。高防IP是一种具有强大防御能力的网络服务,能够抵御各种形式的网络攻击,包括DDoS攻击。然而࿰…...
3dsMax怎样让渲染效果更逼真出色?三套低中高参数设置
渲染是将精心构建的3D模型转化为逼真图像的关键步骤。但要获得令人惊叹的渲染效果,仅仅依赖默认设置是不够的。 实现在追求极致画面效果的同时,兼顾渲染速度和时间还需要进行一些调节设置,如何让渲染效果更加逼真? 一、全局照明与…...
Android的OverlayFS原理与作用
标签: OverlayFS; Android;Overlay Filesystem; Android的OverlayFS原理与作用 概述 OverlayFS(Overlay Filesystem)是一种联合文件系统,允许将一个或多个文件系统叠加在一起,使它们表现为一个单一的文件系统。Android系统利用OverlayFS来实现动态文件系统的叠加和管…...
奇点临近:人类与智能时代的未来
在信息爆炸的时代,我们每天都被海量的信息所淹没,如何才能在这个嘈杂的世界中找到真正有价值的信息?如何才能利用信息的力量,提升我们的认知水平,重塑我们的未来? 这些问题的答案,或许都能在雷…...
NAS教程丨铁威马如何登录 SSH终端?
适用型号: 所有TNAS 型号 如您有特殊操作需要通过 SSH 终端登录 TNAS,请参照以下指引: (注意: 关于以下操作步骤中的"cd /"的指令,其作用是使当前 SSH/Telnet 连接的位置切换到根目录,以免造成对卷的占用.请不要遗漏它.) Windows…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
