目标跟踪——KCF源码用python实现
from numpy.fft import fft2, ifft2, fftshift
import cv2
import numpy as npclass HOG:def __init__(self, winSize):""":param winSize: 检测窗口的大小"""self.winSize = winSizeself.blockSize = (8, 8)self.blockStride = (4, 4)self.cellSize = (4, 4)self.nBins = 9self.hog = cv2.HOGDescriptor(winSize, self.blockSize, self.blockStride,self.cellSize, self.nBins)def get_feature(self, image):winStride = self.winSizew, h = self.winSizew_block, h_block = self.blockStridew = w//w_block - 1h = h//h_block - 1# 计算给定图像的HOG特征描述子,一个n*1的特征向量hist = self.hog.compute(img=image, winStride=winStride, padding=(0, 0))return hist.reshape(w, h, 36).transpose(2, 1, 0) # 交换轴的顺序def show_hog(self, hog_feature):c, h, w = hog_feature.shapefeature = hog_feature.reshape(2, 2, 9, h, w).sum(axis=(0, 1))grid = 16hgrid = grid // 2img = np.zeros((h*grid, w*grid))for i in range(h):for j in range(w):for k in range(9):x = int(10 * feature[k, i, j] * np.cos(x=np.pi / 9 * k))y = int(10 * feature[k, i, j] * np.sin(x=np.pi / 9 * k))cv2.rectangle(img=img, pt1=(j*grid, i*grid), pt2=((j + 1) * grid, (i + 1) * grid),color=(255, 255, 255))x1 = j * grid + hgrid - xy1 = i * grid + hgrid - yx2 = j * grid + hgrid + xy2 = i * grid + hgrid + ycv2.line(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(255, 255, 255), thickness=1)cv2.imshow("img", img)cv2.waitKey(0)class Tracker:def __init__(self):# 超参数设置self.max_patch_size = 256self.padding = 2.5self.sigma = 0.6self.lambdar = 0.0001self.update_rate = 0.012self.gray_feature = Falseself.debug = False# 算法变量定义self.scale_h = 0.self.scale_w = 0.self.ph = 0self.pw = 0self.hog = HOG((self.pw, self.pw))self.alphaf = Noneself.x = Noneself.roi = Nonedef first_frame(self, image, roi):"""对视频的第一帧进行标记,更新tracer的参数:param image: 第一帧图像:param roi: 第一帧图像的初始ROI元组:return: None"""x1, y1, w, h = roicx = x1 + w // 2cy = y1 + h // 2roi = (cx, cy, w, h)# 确定Patch的大小,并在此Patch中提取HOG特征描述子scale = self.max_patch_size / float(max(w, h))self.ph = int(h * scale) // 4 * 4 + 4self.pw = int(w * scale) // 4 * 4 + 4self.hog = HOG((self.pw, self.ph))# 在矩形框的中心采样、提取特征x = self.get_feature(image, roi)y = self.gaussian_peak(x.shape[2], x.shape[1])self.alphaf = self.train(x, y, self.sigma, self.lambdar)self.x = xself.roi = roidef update(self, image):"""对给定的图像,重新计算其目标的位置:param image::return:"""# 包含矩形框信息的四元组(min_x, min_y, w, h)cx, cy, w, h = self.roimax_response = -1 # 最大响应值for scale in [0.95, 1.0, 1.05]:# 将ROI值处理为整数roi = map(int, (cx, cy, w * scale, h * scale))z = self.get_feature(image, roi) # tuple(36, h, w)# 计算响应responses = self.detect(self.x, z, self.sigma)height, width = responses.shapeif self.debug:cv2.imshow("res", responses)cv2.waitKey(0)idx = np.argmax(responses)res = np.max(responses)if res > max_response:max_response = resdx = int((idx % width - width / 2) / self.scale_w)dy = int((idx / width - height / 2) / self.scale_h)best_w = int(w * scale)best_h = int(h * scale)best_z = z# 更新矩形框的相关参数self.roi = (cx + dx, cy + dy, best_w, best_h)# 更新模板self.x = self.x * (1 - self.update_rate) + best_z * self.update_ratey = self.gaussian_peak(best_z.shape[2], best_z.shape[1])new_alphaf = self.train(best_z, y, self.sigma, self.lambdar)self.alphaf = self.alphaf * (1 - self.update_rate) + new_alphaf * self.update_ratecx, cy, w, h = self.roireturn cx - w // 2, cy - h // 2, w, hdef get_feature(self, image, roi):"""对特征进行采样:param image::param roi: 包含矩形框信息的四元组(min_x, min_y, w, h):return:"""# 对矩形框做2.5倍的Padding处理cx, cy, w, h = roiw = int(w*self.padding)//2*2h = int(h*self.padding)//2*2x = int(cx - w//2)y = int(cy - h//2)# 矩形框所覆盖的距离sub_img = image[y:y+h, x:x+w, :]resized_img = cv2.resize(src=sub_img, dsize=(self.pw, self.ph))if self.gray_feature:feature = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY)feature = feature.reshape(1, self.ph, self.pw)/255.0 - 0.5else:feature = self.hog.get_feature(resized_img)if self.debug:self.hog.show_hog(feature)# Hog特征的通道数、高估、宽度fc, fh, fw = feature.shapeself.scale_h = float(fh)/hself.scale_w = float(fw)/w# 两个二维数组,前者(fh,1),后者(1,fw)hann2t, hann1t = np.ogrid[0:fh, 0:fw]hann1t = 0.5 * (1 - np.cos(2 * np.pi * hann1t / (fw - 1)))hann2t = 0.5 * (1 - np.cos(2 * np.pi * hann2t / (fh - 1)))# 一个fh x fw的矩阵hann2d = hann2t * hann1tfeature = feature * hann2dreturn featuredef gaussian_peak(self, w, h):""":param w::param h::return: 一个w*h的高斯矩阵"""output_sigma = 0.125sigma = np.sqrt(w * h) / self.padding * output_sigmasyh, sxh = h//2, w//2y, x = np.mgrid[-syh:-syh + h, -sxh:-sxh + w]x = x + (1 - w % 2) / 2.y = y + (1 - h % 2) / 2.g = 1. / (2. * np.pi * sigma ** 2) * np.exp(-((x ** 2 + y ** 2) / (2. * sigma ** 2)))return gdef kernel_correlation(self, x1, x2, sigma):"""核化的相关滤波操作:param x1::param x2::param sigma: 高斯参数sigma:return:"""# 转换到傅里叶空间fx1 = fft2(x1)fx2 = fft2(x2)# \hat{x^*} \otimes \hat{x}',x*的共轭转置与x'的乘积tmp = np.conj(fx1) * fx2# 离散傅里叶逆变换转换回真实空间idft_rbf = ifft2(np.sum(tmp, axis=0))# 将零频率分量移到频谱中心。idft_rbf = fftshift(idft_rbf)# 高斯核的径向基函数d = np.sum(x1 ** 2) + np.sum(x2 ** 2) - 2.0 * idft_rbfk = np.exp(-1 / sigma ** 2 * np.abs(d) / d.size)return kdef train(self, x, y, sigma, lambdar):"""原文所给参考train函数:param x::param y::param sigma::param lambdar::return:"""k = self.kernel_correlation(x, x, sigma)return fft2(y) / (fft2(k) + lambdar)def detect(self, x, z, sigma):"""原文所给参考detect函数:param x::param z::param sigma::return:"""k = self.kernel_correlation(x, z, sigma)# 傅里叶逆变换的实部return np.real(ifft2(self.alphaf * fft2(k)))def track(video_path):cap = cv2.VideoCapture(video_path)tracker = Tracker()ok, frame = cap.read()if not ok:print("error reading video")exit(-1)roi = cv2.selectROI("tracking", frame, False, False)# roi = (218, 302, 148, 108)tracker.first_frame(frame, roi)while cap.isOpened():ok, frame = cap.read()if not ok:breakx, y, w, h = tracker.update(frame)cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 1)cv2.imshow('tracking', frame)c = cv2.waitKey(1) & 0xFFif c == 27 or c == ord('q'):breakcap.release()cv2.destroyAllWindows()if __name__ == '__main__':video_path = r'D:\desk\Work\API\fpga\siamfc-pytorch\video\444.mp4'track(video_path=video_path)
参考链接
https://blog.csdn.net/qq_59109986/article/details/127892628
相关文章:
目标跟踪——KCF源码用python实现
from numpy.fft import fft2, ifft2, fftshift import cv2 import numpy as npclass HOG:def __init__(self, winSize):""":param winSize: 检测窗口的大小"""self.winSize winSizeself.blockSize (8, 8)self.blockStride (4, 4)self.cellSiz…...
前端 转换笔记
<!DOCTYPE html> <html> <head> <meta charset"utf-8" /> <title>转换</title> <style> .box{ /* 盒子摆在body的正中间 */ position: absolut…...
个人开发笔记
开发笔记 开发常见问题Vue开发中页面flex滚动布局,内容置顶问题功能快捷键 开发常见问题 Vue开发中页面flex滚动布局,内容置顶问题 直接操作路由: const router createRouter({routes: routes,history: createWebHashHistory(),scrollBeha…...

pdf压缩,pdf压缩在线,pdf文件太大怎么变小
在数字化时代,PDF文档因其跨平台、保持原样、易于阅读和打印等特点,成为了我们日常工作和生活中不可或缺的一部分。然而,随着PDF文件的不断累积,存储空间逐渐变得紧张,特别是在处理大量大型PDF文件时,如何有…...

Go 如何使用指针灵活操作内存
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

【面试干货】Java中的++操作符与线程安全性
【面试干货】Java中的操作符与线程安全性 1、什么是线程安全性?2、 操作符的工作原理3、 操作符与线程安全性4、如何确保线程安全?5、 结论 💖The Begin💖点点关注,收藏不迷路💖 在Java编程中,操…...
NLP学习与踩坑记录(持续更新版)
NLP学习与踩坑记录(持续更新版) OSError: Cant load tokenizer for bert-base-uncased.google.protobuf.message.DecodeError: Error parsing messageDeepspeed 本博客记录了博主在学习NLP时遇到了各种各样的问题与解决方法,供大家参考&#…...

Java也能做OCR!SpringBoot 整合 Tess4J 实现图片文字识别
文章目录 1. 环境准备1.1 安装 Tesseract OCR 引擎1.2 引入 Tess4J 依赖 2. 创建 Spring Boot 项目2.1 初始化项目2.2 目录结构 3. 编写 OCR 功能代码3.1 创建服务层3.2 创建控制器层 4. 配置 Tesseract 语言包5. 运行和测试5.1 启动 Spring Boot 应用5.2 使用 Postman 或 cURL…...
微信小程序常用标签及其用法
大家好,我是linzi,今天我来给大家分享一下微信小程序一些个常用的标签及其用法 1. <view> 标签 <view> 标签是小程序中最常用的标签之一,用于组织和布局页面上的内容,类似于HTML中的 <div> 标签。 <view …...
开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统
我在抖音上发布了视频 https://www.douyin.com/video/7382446337482099977 下面是主要内容介绍 【视频标题:】开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统 #智能体 #FastGPT #客服系统-----------【视频行业分类:】<3C数码>-…...
Flink集群运行模式
我们了解了flink的一个集群的一个基础架构,包括里面核心的一些组件,比如说job manager,task manager等一些组件的一些主要的一些组成。本节课程开始我们学习flink的一个集群部署模式。首先我们来看一下flink集群部署模式究竟应该有哪一些种类…...
XSS 安全漏洞介绍及修复方案
简介 XSS(Cross Site Scripting)是一种常见的 Web 安全漏洞,攻击者通过在网页中注入恶意脚本代码,使得网页在用户端执行这些脚本,从而窃取用户信息或者进行其他恶意操作。为了防止 XSS 攻击,可以使用正则表…...

基于STM32的智能仓库管理系统
目录 引言环境准备智能仓库管理系统基础代码实现:实现智能仓库管理系统 4.1 数据采集模块4.2 数据处理与分析4.3 通信模块实现4.4 用户界面与数据可视化应用场景:仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通过使用STM32嵌…...

LeetCode —— 只出现一次的数字
只出现一次的数字 I 本题依靠异或运算符的特性,两个相同数据异或等于0,数字与0异或为本身即可解答。代码如下: class Solution { public:int singleNumber(vector<int>& nums) {int ret 0;for (auto e : nums){ret ^ e;}return ret;} };只出…...

python遍历文件夹中所有图片
python遍历文件夹中的图片-CSDN博客 这个是之前的版本,现在这个版本会更好,直接进来就在列表中 path glob.glob("1/*.jpg")print(path)print(len(path))path_img glob.glob("1/*.jpg")path_img.extend(path)print(len(path_img))…...
速盾:DDOS能打死高防ip吗?
DDoS攻击是一种利用大量计算机或设备发起的分布式拒绝服务攻击。它的目标是通过发送大量流量或请求,使目标服务器或网络资源无法正常工作。高防IP是一种具有强大防御能力的网络服务,能够抵御各种形式的网络攻击,包括DDoS攻击。然而࿰…...

3dsMax怎样让渲染效果更逼真出色?三套低中高参数设置
渲染是将精心构建的3D模型转化为逼真图像的关键步骤。但要获得令人惊叹的渲染效果,仅仅依赖默认设置是不够的。 实现在追求极致画面效果的同时,兼顾渲染速度和时间还需要进行一些调节设置,如何让渲染效果更加逼真? 一、全局照明与…...
Android的OverlayFS原理与作用
标签: OverlayFS; Android;Overlay Filesystem; Android的OverlayFS原理与作用 概述 OverlayFS(Overlay Filesystem)是一种联合文件系统,允许将一个或多个文件系统叠加在一起,使它们表现为一个单一的文件系统。Android系统利用OverlayFS来实现动态文件系统的叠加和管…...

奇点临近:人类与智能时代的未来
在信息爆炸的时代,我们每天都被海量的信息所淹没,如何才能在这个嘈杂的世界中找到真正有价值的信息?如何才能利用信息的力量,提升我们的认知水平,重塑我们的未来? 这些问题的答案,或许都能在雷…...

NAS教程丨铁威马如何登录 SSH终端?
适用型号: 所有TNAS 型号 如您有特殊操作需要通过 SSH 终端登录 TNAS,请参照以下指引: (注意: 关于以下操作步骤中的"cd /"的指令,其作用是使当前 SSH/Telnet 连接的位置切换到根目录,以免造成对卷的占用.请不要遗漏它.) Windows…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...