【详细教程】如何使用YOLOv10进行图片与视频的目标检测
《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【车辆检测追踪与流量计数系统】 |
49.【行人检测追踪与双向流量计数系统】 | 50.【基于YOLOv8深度学习的反光衣检测与预警系统】 |
51.【危险区域人员闯入检测与报警系统】 | 52.【高压输电线绝缘子缺陷智能检测系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
简介
继 YOLOv8 和 YOLOv9 之后,YOLOv10也相继推出。这一突破性的迭代有望在目标检测领域实现重大飞跃。让我们深入研究细节,了解 YOLOv10 如何赋能计算机视觉的未来。
YOLOv10 擅长精确定位和识别图像和视频中的物体。这种能力构成了众多应用的支柱,包括自动驾驶汽车、先进的安全系统和强大的图像搜索引擎。然而,YOLOv10 在这些基础上引入了超越 YOLOv8 和 YOLOv9 的突破性创新。
YOLOv10 性能的关键创新:
- 无 NMS 训练:YOLOv10 通过采用一种称为一致双重分配的新技术,消除了训练期间对非最大抑制 (NMS) 的需求。这简化了推理过程,从而显著减少了延迟,使实时对象检测速度更快。
- 整体模型设计:YOLOv10 的架构师精心优化了模型的各个组件,将效率和准确性放在首位。这种整体方法包括轻量级分类头、独特的空间通道解耦下采样技术和秩引导块设计。其结果是一个在不牺牲计算效率的情况下实现卓越性能的模型。
- 增强的模型能力:YOLOv10 集成了大核卷积和部分自注意力模块等尖端功能。这些改进提高了模型的性能,而不会产生大量的计算成本。这种功耗和效率之间的平衡使 YOLOv10 成为适用于更广泛计算机视觉任务的多功能工具。
通过结合这些创新,YOLOv10 将自己定位为实时对象检测的强大引擎。它能够提供卓越的准确性和效率,为各种计算机视觉应用带来令人兴奋的可能性。请继续关注 YOLOv10 如何塑造这个充满活力的领域的未来!
使用 YOLOv10 处理图像和视频
步骤 1:安装必要的库
pip install opencv-python ultralytics
第 2 步:导入库
import cv2
from ultralytics import YOLO
第 3 步:选择模型尺寸
model = YOLO("yolov10x.pt")
可以比较不同的型号并权衡它们各自的优缺点。在这种情况下,我们选择了 yolov10x.pt。
第 4 步:编写一个函数来检测图像和视频中的对象
def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results
predict()
功能
此函数采用三个参数:
chosen_model
:用于预测的训练模型img
:要进行预测的图像classes
:(可选)要将预测筛选到的类名列表conf
:(可选)要考虑的预测的最小置信度阈值
该函数首先检查是否提供了 classes
参数。如果是,则使用 classes
参数调用该 chosen_model.predict()
方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict()
方法时不带 classes
参数,该参数将返回所有预测。
该 conf
参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。
该函数返回预测结果列表,其中每个结果都包含以下信息:
name
:预测类的名称conf
:预测的置信度分数box
:预测对象的边界框
predict_and_detect()
功能
此函数采用与 predict()
函数相同的参数,但除了预测结果外,它还返回带注释的图像。
该函数首先调用该 predict()
函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。
该函数返回一个包含带注释的图像和预测结果的元组。
以下是这两个函数之间差异的摘要:
- 该
predict()
函数仅返回预测结果,而该predict_and_detect()
函数还返回带注释的图像。 - 该
predict_and_detect()
函数是predict()
函数的包装器,这意味着它在内部调用函数predict()
。
第 5 步:使用 YOLOv10 检测图像中的对象
# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)
如果要检测特定类(可在此处找到),只需在类列表中输入对象的 ID 号即可。
第 6 步:保存并绘制结果图像
cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)
第 7 步:使用 YOLOv10 检测视频中的对象
video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)cv2.imshow("Image", result_img)cv2.waitKey(1)
第 8 步:保存结果视频
# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))# initialize the FourCC and a video writer objectfourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer
只需使用上面的函数和代码即可
output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()
结论
在本教程中,我们学习了如何使用 YOLOv10 检测图像和视频中的对象。如果您觉得此代码有用,感谢点赞关注。
引用
YOLOv10论文:https://arxiv.org/abs/2402.13616
YOLOv10源码:https://github.com/WongKinYiu/yolov10
好了,这篇文章就介绍到这里,感谢点赞关注,更多精彩内容持续更新中~
关注文末名片G-Z-H:【阿旭算法与机器学习】,可获取更多干货学习资源
相关文章:

【详细教程】如何使用YOLOv10进行图片与视频的目标检测
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

LLM大语言模型-AI大模型全面介绍
简介: 大语言模型(LLM)是深度学习的产物,包含数十亿至数万亿参数,通过大规模数据训练,能处理多种自然语言任务。LLM基于Transformer架构,利用多头注意力机制处理长距离依赖,经过预训…...

瑜伽馆管理系统的设计
管理员账户功能包括:系统首页,个人中心,管理员管理,教练管理,用户管理,瑜伽管理,套餐管理,体测报告管理,基础数据管理 前台账户功能包括:系统首页࿰…...

JAVA【案例5-2】模拟默认密码自动生成
【模拟默认密码自动生成】 1、案例描述 本案例要求编写一个程序,模拟默认密码的自动生成策略,手动输入用户名,根据用户名自动生成默认密码。在生成密码时,将用户名反转即为默认的密码。 2、案例目的 (1)…...

小区业主管理系统
摘 要 随着城市化进程的加速和人口的不断增加,小区的数量也在不断增加。小区作为城市居民居住的主要场所,其管理工作也变得越来越重要。传统的小区业主管理方式存在诸多问题,如信息传递不畅、业务处理效率低下等。因此,开发一个高…...

vncsever ,window 远程ubuntu远程界面安装方式,VNC Viewer安装教程+ linux配置server 操作
linux 端安装 # 安装VNC 服务器软件 sudo apt install autocutsel # 剪切黏贴操作支持的包 sudo apt-get install tightvncserver # 安装的是 VNC 服务器软件,用于远程桌面访问 # 安装Xfce桌面环境 sudo apt-get install xfce4 xfce4-goodies #安装的是 XFCE 桌…...
java spring boot 单/多文件上传/下载
文章目录 使用版本文件上传服务端客户端(前端)方式一方式二 文件下载服务端客户端(前端) 代码仓库地址 使用版本 后端 spring-boot 3.3.0jdk17 前端 vue “^3.3.11”vite “^5.0.8”axios “^1.7.2” 文件上传 上传文件比较…...
C语言的内存函数
1. memcpy使⽤和模拟实现 1 void * memcpy ( void * destination, const void * source, size_t num ); • 函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 • 这个函数在遇到 \0 的时候并不会停下来。 • 如果source和destination有任…...
【网络通信】计算机网络安全技术总结
一、概述 在数字时代的浪潮下,计算机网络安全技术已成为保护数据完整性和安全性的基石。这项技术不仅是计算机科学的重要组成部分,也是应对各种网络威胁和挑战的关键手段。 二、核心技术和应用 2.1 加密技术 作为网络安全技术的核心,加密技…...

Redis-实战篇-什么是缓存-添加redis缓存
文章目录 1、什么是缓存2、添加商户缓存3、前端接口4、ShopController.java5、ShopServiceImpl.java6、RedisConstants.java7、查看Redis Desktop Manager 1、什么是缓存 缓存就是数据交换的缓冲区(称为Cache),是存贮数据的临时地方ÿ…...
《妃梦千年》第十一章:再遇故人
第十一章:再遇故人 宫中的局势暂时平静下来,但林清婉知道,危险随时可能卷土重来。她必须不断提升自己,才能在这复杂的环境中保护自己和皇上。一天,林清婉正在寝宫中读书,忽然收到了一封信。信中只有短短几…...

反序列化底层学习
反序列化底层学习 前言 以前也是懒得学,觉得没有必要,学到现在发现好多东西都需要学习java的底层,而且很多漏洞都是通过反序列化底层挖出来的,比如weblogic的一些绕过,我这里也主要是为了学习weblogic来学习的&#…...

项目训练营第五天
项目训练营第五天 后端代码优化 通用异常处理类编写 Data public class BaseResponse<T> implements Serializable {int code;T data;String message null;String description null;public BaseResponse(int code, T data, String message, String description) {th…...
数据收集和数据分析
数据分析和收集是一个多步骤的过程,涉及到不同的方法和思维构型。 以下是一些常见的数据收集方法和数据分析的思维模式: ### 数据收集方法: 1. **调查问卷**: 通过设计问卷来收集定量或定性数据。(质量互变规律里面…...
Kubernetes(K8s)从入门到精通系列之十九:Operator模式
Kubernetes K8s从入门到精通系列之十九:Operator模式 一、动机二、Operators in Kubernetes三、Operator示例四、部署Operator五、使用Operator六、编写自己的operator Operator 是 Kubernetes 的软件扩展,它利用自定义资源来管理应用程序及其组件。 Ope…...

vuex的actions返回结果类型是promise及actions方法互相调用
this.$store.dispatch(‘logout’)返回的结果是Promise类型的 调用成功的情况下,返回状态为fulfilled,值为undefined。 所以可以直接进行.then操作: this.$store.dispatch(logout).then((result) > {console.log(result); });因为 Vuex …...

【干货】Jupyter Lab操作文档
Jupyter Lab操作文档1. 使用须知2. 定制化Jupyter设置主题显示代码行数设置语言更多设置 3. 认识Jupyter界面4. 初用Jupyter运行调试格式化查看源码 5. 使用Jupyter Terminal6. 使用Jupyter Markdown7. 上传下载文件(云服务器中的Jupyter Lab)上传文件到…...

iOS分享到微信,配置Universal Links,并从微信打开app,跳转到指定界面
iOS分享到微信之后,需要从微信浏览器直接打开app,跳转到指定界面,这个时候最主要的就是分以下几步(微信sdk集成就不说了) 1.配置Universal Links Universal Links是iOS新系统出来后通用链接,用于在第三方浏览器直接打开app&…...

基于SSM构建的校园失眠与压力管理系统的设计与实现【附源码】
毕业设计(论文) 题目:基于SSM构建的校园失眠与压力管理系统的设计与实现 二级学院: 专业(方向): 班 级: 学 生: 指导教师&a…...

SAP 初始化库存移动类型561501511区别简介
项目上线初始化库存经常会用到561这个移动类型,同时我们在平时测试的过程中也会用到会进行库存的初始化,用的比较多是就是561和501这两个移动类型,本文将测试移动类型561&501&511这三个移动类型,分析三者之间的区别&#…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...