当前位置: 首页 > news >正文

群体优化算法---石墨烯优化算法介绍以及在期权定价上的应用(Black-Scholes模型来计算欧式期权的理论价格)

介绍

石墨烯算法是一种新兴的优化算法,灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构,具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移,来求解复杂的优化问题

基本概念

石墨烯的结构:
石墨烯由碳原子组成,每个碳原子与其他三个碳原子通过共价键连接,形成一个蜂窝状的二维晶格结构。这种结构使得石墨烯具有非常高的强度和导电性。

石墨烯算法的灵感:
石墨烯算法借鉴了石墨烯的这种晶格结构和原子迁移特性,通过模拟碳原子在二维平面上的移动和相互作用,来寻找优化问题的最优解

算法步骤

初始化:
初始化一组解,称为“碳原子”,并将它们随机分布在二维平面上。这些解代表了问题的初始解集。

评估适应度:
计算每个碳原子的适应度值,根据适应度函数评估每个解的优劣。

更新位置:
根据某种规则更新碳原子的位置,模拟碳原子在二维平面上的迁移。这种迁移可以通过模拟退火、粒子群算法或其他元启发式方法来实现。

局部搜索:
在每次迭代中,对每个碳原子进行局部搜索,进一步优化其位置。局部搜索可以通过梯度下降或其他局部优化方法来实现。

选择与替换:
根据适应度值选择较优的碳原子,并用它们替换较差的碳原子,形成新的解集。

迭代:
重复上述步骤,直到达到预定的迭代次数或满足收敛条件。

石墨烯算法的优点

全局搜索能力强:
石墨烯算法能够在广阔的搜索空间中找到全局最优解,避免陷入局部最优。

收敛速度快:
通过模拟碳原子的快速迁移和局部优化,石墨烯算法具有较快的收敛速度。

适应性强:
石墨烯算法可以处理各种类型的优化问题,包括连续、离散和混合优化问题

石墨烯算法的应用

石墨烯算法可以应用于许多实际问题,如:

工程优化:
用于结构优化、路径规划、资源分配等工程领域的问题。

机器学习:
用于神经网络训练、特征选择、超参数优化等机器学习任务。

数据挖掘:
用于聚类分析、关联规则挖掘、分类等数据挖掘任务。

金融优化:
用于投资组合优化、风险管理、期权定价等金融领域的问题

本文代码

定义期权定价模型:我们可以使用Black-Scholes模型来计算欧式期权的理论价格。
设计石墨烯优化算法:模拟石墨烯原子之间的相互作用和迁移,以找到最优的期权定价参数。
整合并实现:将期权定价模型和石墨烯算法整合在一起。

期权定价模型(Black-Scholes)

Black-Scholes模型用于计算欧式看涨期权(Call Option)和看跌期权(Put Option)的价格:
在这里插入图片描述

核心代码

Graphene_Option_Pricing.m

function [best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call)% 参数初始化dim = 1;  % 需要优化的参数维度:波动率σlower_bound = [0.01];  % 下界:波动率upper_bound = [1.0];  % 上界:波动率max_iter = 500;  % 最大迭代次数pop_size = 30;  % 种群大小% 适应度函数:计算Black-Scholes理论价格与市场价格的均方误差fitness_func = @(params) calculate_fitness(params, S0, K, r, T, market_price, is_call);% 石墨烯优化算法[best_params, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func);disp('Best parameters found:');disp(best_params);disp('Fitness of best parameters:');disp(best_fitness);% 验证找到的最佳波动率参数optimal_sigma = best_params(1);% 使用最佳波动率参数计算期权价格if is_callmodel_price = Black_Scholes_Call(S0, K, r, optimal_sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, optimal_sigma, T);end% 打印模型价格和市场价格进行比较disp('Optimal sigma:');disp(optimal_sigma);disp('Model option price with optimal sigma:');disp(model_price);disp('Market option price:');disp(market_price);
endfunction fitness = calculate_fitness(params, S0, K, r, T, market_price, is_call)sigma = params(1);if is_callmodel_price = Black_Scholes_Call(S0, K, r, sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, sigma, T);end
endfunction C = Black_Scholes_Call(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);C = S0 * normcdf(d1) - K * exp(-r * T) * normcdf(d2);
endfunction P = Black_Scholes_Put(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);P = K * exp(-r * T) * normcdf(-d2) - S0 * normcdf(-d1);
endfunction [best_solution, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func)% 初始化positions = lower_bound + (upper_bound - lower_bound) .* rand(pop_size, dim);% 主循环for iter = 1:max_iter% 更新位置for i = 1:pop_size% 模拟碳原子的迁移new_position = positions(i, :) + rand(1, dim) .* (best_solution - positions(i, :));new_position = max(min(new_position, upper_bound), lower_bound);new_fitness = fitness_func(new_position);% 局部搜索if new_fitness < fitness(i)positions(i, :) = new_position;fitness(i) = new_fitness;end% 更新最优解if new_fitness < best_fitnessbest_fitness = new_fitness;best_solution = new_position;endend% 记录迭代过程中的最优值(可选)disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(best_fitness)]);end
end

run_graphene_option_pricing.m

function run_graphene_option_pricing% 示例使用
S0 = 100;  % 当前股票价格
K = 100;  % 执行价格
r = 0.05;  % 无风险利率
T = 1;  % 到期时间(年)
market_price = 10;  % 市场期权价格
is_call = true;  % 是否为看涨期权[best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call);
disp('Best parameters for sigma:');
disp(best_params);
disp('Best fitness:');
disp(best_fitness);end

说明

初始化:初始化石墨烯算法的种群,包括参数的上下界、最大迭代次数和种群大小。
适应度函数:计算理论价格和市场价格之间的均方误差。
Black-Scholes模型:计算欧式看涨期权和看跌期权的价格。
石墨烯优化算法:通过模拟石墨烯原子的迁移和相互作用,找到最佳的期权定价参数。
结果输出:输出最佳参数和相应的适应度值。

效果

在这里插入图片描述

完整代码获取

微信扫一扫,回复"石墨烯优化算法"即可查看完整代码
在这里插入图片描述

相关文章:

群体优化算法---石墨烯优化算法介绍以及在期权定价上的应用(Black-Scholes模型来计算欧式期权的理论价格)

介绍 石墨烯算法是一种新兴的优化算法&#xff0c;灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构&#xff0c;具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移&#xff0c;来求解复杂的优化问题 基本概念…...

创纪录!沃飞长空完成新一轮融资,实力获资方认可

作为全球竞逐的战略性新兴产业&#xff0c;今年首次写入政府工作报告的“低空经济”热度正持续提升&#xff0c;在政策、产业等多个层面均有重大突破。行业的飞速发展也吸引了投资界的目光&#xff0c;越来越多资本正投向低空经济。 近期&#xff0c;国内领先的低空出行企业吉…...

1991java Web体检预约管理系统eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP体检预约管理系统是一套完善的web设计系统&#xff0c;对理解JSP java 编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使用…...

如何优雅终止线程/线程池

如何优雅终止线程 分为两个阶段终止线程 1、interrupted(): 让线程从休眠状态转换到RUNNABLE 状态 2、线程终止的标志位:线程会在合适的时机检查这个标志位&#xff0c;如果发现符合终止条件&#xff0c;则自动退出 run() 方法 public class MonitorThread extends Thread {/…...

泰迪智能科技实验室产品-云计算资源管理平台介绍

云计算资源管理平台是一款集群应用程序管理平台&#xff0c;以Docker、Kubernetes为核心引擎的容器化应用部署、运行环境&#xff0c;对数据中心的物理服务器、网络、存储、虚拟服务器等基础架构资源进行集中统一的管理、分配、监控等。平台旨在围绕行业应用逐步由“虚拟化”向…...

.Net WebApi启动 Swagger异常报错: Failed to load API definition

问题描述&#xff1a; 基于.Net6.0的WebApi 启动Swagger报错&#xff1a;Failed to load API definition。即无法加载API定义。 解决方法&#xff1a; 分析程序输出日志&#xff1a; 错误信息&#xff1a; ERROR Microsoft.AspNetCore.Diagnostics.DeveloperExceptionPageMid…...

CSS新手入门笔记【导入方法、选择器介绍、选择器优先级、属性详细介绍、盒子模型】

目录 一、目的与优势二、CSS导入方式三、语法结构四、选择器类型基本选择器组合选择器伪类与伪元素属性选择器 六、选择器优先级总结 六、CSS属性1. 字体与文本属性2. 背景属性3. 尺寸与盒模型属性4. 布局与定位5. 列表样式6. 边框与轮廓7. 文本装饰与效果8. 动画与过渡9. 伪类…...

制作高校专属PPT时,如何将校徽设置成透明底色?无须PS

目录 示例&#xff1a;以清华大学为例 1必应搜索“清华大学校徽” 2保存清华大学校徽及校名。 3将校徽导入到PPT中 ​4 选中校徽&#xff0c;然后依次选择“图片格式”-->颜色-->设置透明色​编辑 5出现“画笔”&#xff0c;由于截图的缘故&#xff0c;画笔没有在截…...

设计模式之【适配器模式】

类适配器实现&#xff08;继承&#xff09; 类适配器通过继承来实现适配器功能 // 目标接口 public interface Target {void request(); }// 被适配者 public class Adaptee {public void specificRequest() {System.out.println("Adaptee: specificRequest");} }/…...

AI论文降重:一键操作,让你的论文查重率瞬间下降

高查重率是许多毕业生的困扰。通常&#xff0c;高查重率源于过度引用未经修改的参考资料和格式错误。传统的降重方法&#xff0c;如修改文本和增添原创内容&#xff0c;虽必要但耗时且成效不一。 鉴于此&#xff0c;应用AI工具进行AIGC降重成为了一个高效的解决方案。这些工具…...

Cmake--学习笔记

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

LangChain让LLM带上记忆

最近两年&#xff0c;我们见识了“百模大战”&#xff0c;领略到了大型语言模型&#xff08;LLM&#xff09;的风采&#xff0c;但它们也存在一个显著的缺陷&#xff1a;没有记忆。 在对话中&#xff0c;无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangCha…...

Word恢复历史文档,记好4个方法就足够

“我正在准备一个重要的报告&#xff0c;但是电脑突然就崩溃了&#xff0c;导致我的文档还没保存就被关闭了&#xff0c;大家有什么方法可以恢复Word历史文档吗&#xff1f;快给我出出主意吧&#xff01;” 在数字化时代&#xff0c;文档编辑和保存已经成为我们日常工作和学习中…...

收银系统源码-千呼新零售2.0【线上营销】

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货等连锁店使用。 详细介绍请查看&a…...

OnlyOffice测评

官方链接&#xff1a; https://www.onlyoffice.com/zh/office-suite.aspx https://www.onlyoffice.com/zh/pdf-editor.aspx OnlyOffice&#xff1a;引领办公效率的新标杆 在数字化时代的浪潮中&#xff0c;办公软件已经成为我们日常工作中不可或缺的一部分。然而&#xff0c;…...

UDS - 8 Application layer protocol

8 应用层协议 来自:ISO 14229-1-2020.pdf 8.1 一般定义 应用层协议应始终是确认消息传输,这意味着对于从客户端发送的每个服务请求,服务器应发送一个或多个相应的响应。 此规则的唯一例外是使用功能寻址或请求/指示指定不生成响应/确认的少数情况。为了不给系统带来许多不…...

二叉树公共最近祖先

文章目录 1. **二叉搜索树&#xff08;Binary Search Tree, BST&#xff09;**2. **一般二叉树****递归方法**:**迭代方法**: 案例展示二叉搜索树&#xff08;BST&#xff09;中查找LCA一般二叉树中查找LCA1. **使用哈希表存储父节点信息**2. **处理多个查询**3. **异常处理**结…...

智慧运维系统指导规范

随着信息技术的迅猛发展&#xff0c;智慧运维系统在现代企业中扮演着越来越重要的角色。为了提高运维效率、保障系统稳定运行&#xff0c;并制定一套科学、合理的智慧运维系统指导规范至关重要。本规范旨在为企业提供一套全面、系统的智慧运维管理方法和操作准则&#xff0c;以…...

最新自助下单彩虹云商城系统源码,含小储云商城模板免授权

最新彩虹商城源码,含小储云商城模板免授权&#xff0c;试用了一下还行&#xff0c;具体的大家可以看看 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/89405387 更多资源下载&#xff1a;关注我。...

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)

文章目录 延迟任务精准发布文章1)文章定时发布2)延迟任务概述2.1)什么是延迟任务2.2)技术对比2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目集成…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...