利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。

假定P1,P2为任意两点,则两点连成线段的中点坐标是
x m i d = ( x 1 + x 2 ) / 2 x_{mid} = (x_1+x_2)/2 xmid=(x1+x2)/2
y m i d = ( y 1 + y 2 ) / 2 y_{mid} = (y_1+y_2)/2 ymid=(y1+y2)/2
P1,P2连线的斜率是
k = ( y 1 − y 2 ) / ( x 1 − x 2 ) k = (y_1-y_2)/(x_1-x_2) k=(y1−y2)/(x1−x2)
P1,P2连线的垂线斜率为
m = − 1 / k m = -1/k m=−1/k
则,圆心所在的直线方程是
y − y m i d = m ∗ ( x − x m i d ) y-y_{mid} = m * (x - x_{mid}) y−ymid=m∗(x−xmid)
圆心 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)同时满足
( x 0 − x 1 ) 2 + ( y 0 − y 1 ) 2 = r 2 (x_0-x_1)^2+(y_0-y_1)^2=r^2 (x0−x1)2+(y0−y1)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
或
( x 0 − x 2 ) 2 + ( y 0 − y 2 ) 2 = r 2 (x_0-x_2)^2+(y_0-y_2)^2=r^2 (x0−x2)2+(y0−y2)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
将直线方程
y 0 = m ∗ ( x 0 − x m i d ) − y m i d y_0 = m*(x_0 -x_{mid})-y_{mid} y0=m∗(x0−xmid)−ymid
代入圆的公式,
得到
( x 0 − x 1 ) 2 + [ m ∗ ( x 0 − x m i d ) + y m i d − y 1 ] 2 = r 2 (x_0-x_1)^2+[m * (x_0-x_{mid})+y_{mid}-y_1]^2=r^2 (x0−x1)2+[m∗(x0−xmid)+ymid−y1]2=r2
展开,
x 0 2 − 2 x 0 x 1 + x 2 2 + m 2 x 0 2 + 2 m x 0 ∗ ( y m i d − m ∗ x m i d − y 1 ) + ( y m i d − m ∗ x m i d − y 1 ) 2 = r 2 x_0^2-2x_0x_1+x_2^2+m^2x_0^2+2mx_0*(y_{mid}-m*x_{mid}-y_1)+(y_{mid}-m*x_{mid}-y_1)^2=r^2 x02−2x0x1+x22+m2x02+2mx0∗(ymid−m∗xmid−y1)+(ymid−m∗xmid−y1)2=r2
整理,
( 1 + m 2 ) x 0 2 + [ 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 ] ∗ x 0 + ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 = 0 (1+m^2)x_0^2+[2m(y_{mid}-m*x_{mid}-y_1)-2x_1]*x_0+(y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 = 0 (1+m2)x02+[2m(ymid−m∗xmid−y1)−2x1]∗x0+(ymid−m∗xmid−y1)2+x12−r2=0
令,
A = 1 + m 2 A= 1+m^2 A=1+m2
B = 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 B= 2m(y_{mid}-m*x_{mid}-y_1)-2x_1 B=2m(ymid−m∗xmid−y1)−2x1
C = ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 C= (y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 C=(ymid−m∗xmid−y1)2+x12−r2
则,
x 0 = − B ± B 2 − 4 A C 2 A x_0=\frac{-B± \sqrt{B^2-4AC}}{2A} x0=2A−B±B2−4AC
y 0 = m ∗ ( x 0 − x m i d ) + y m i d y_0= m*(x_0-x_{mid})+y_{mid} y0=m∗(x0−xmid)+ymid
x_1 = 2
y_1 = 4
x_2 = 4
y_2 = 2
r = 2
if (x_1 - x_2 == 0):print('横坐标相同,求解可能出错')exit()
else:x_mid = (x_1 + x_2) / 2y_mid = (y_1 + y_2) / 2k = (y_1-y_2)/(x_1-x_2)m = -1/kA = 1 + m**2B = 2 * m *(y_mid - m * x_mid - y_1)- 2 * x_1C = (y_mid - m * x_mid - y_1)**2 + x_1**2 - r**2print(A, B, C)x_c1 = (-B + ((B**2-4*A*C)**0.5))/(2*A)x_c2 = (-B - ((B**2-4*A*C)**0.5))/(2*A)y_c1 = m * (x_c1 - x_mid) + y_midy_c2 = m * (x_c2 - x_mid) + y_midprint('圆心坐标:',(x_c1,y_c1))print('圆心坐标:',(x_c2,y_c2))
运行结果:

InsCode
相关文章:
利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。 假定P1,P2为任意两点,则两点连成线段的中点坐标是 x m i …...
从ChatGPT代码执行逃逸到LLMs应用安全思考
摘要 11月7日OpenAI发布会后,GPT-4的最新更新为用户带来了更加便捷的功能,包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界,也展示了GPT-4在处理复杂任务方面的惊人能力。然而,与所有…...
Python入门-基础知识-变量
1.标识符与关键字 Python语言规定,标识符由字母、数字和下画线组成,且不允许以数字开头。合法的标识符可以 是student_1、 addNumber、num等,而3number、2_student等是不合法的标识符。在使用标识符时应注意以下几点。 (1)命名时应遵循见名知…...
设计模式原则——接口隔离原则
设计模式原则 设计模式示例代码库地址: https://gitee.com/Jasonpupil/designPatterns 接口隔离原则 要求程序员尽量将臃肿庞大的接口拆分为更小的和更具体的接口,让接口中只包含客户感兴趣的方法接口隔离原则的目标是降低类或模块之间的耦合度&…...
MySQL数据库——在Centos7环境安装
MySQL在Centos7环境安装 1.切换root用户 安装与卸载中,用户全部切换成为root,安装好后,普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除,避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…...
怎样规避液氮容器内部结霜的问题
液氮容器内部结霜问题一直是我们在使用液氮储存罐时遇到的一个棘手难题。液氮的极低温度使得容器内部很容易产生结霜现象,这不仅影响了容器的正常使用,还可能对内部样品或设备造成损坏。因此,如何有效规避液氮容器内部结霜问题成为了每个使用…...
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求,数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术,冶金工业可以实现生产过程智能化、高效化和绿色化&#…...
一文入门机器学习参数调整实操
作者前言: 通过向身边的同事大佬请教之后,大佬指点我把本文的宗旨从“参数调优”改成了“参数调整”。实在惭愧,暂时还没到能“调优”的水平,本文只能通过实操演示“哪些操作会对数据训练产生影响”,后续加深学习之后,…...
基于51单片机的银行排队呼叫系统设计
一.硬件方案 本系统是以排队抽号顺序为核心,客户利用客户端抽号,工作人员利用叫号端叫号;通过显示器及时显示当前所叫号数,客户及时了解排队信息,通过合理的程序结构来执行排队抽号。电路主要由51单片机最小系统LCD12…...
JXCategoryView的使用总结
一、初始化 -(JXCategoryTitleView *)categoryView{if (!_categoryView) {_categoryView [[JXCategoryTitleView alloc] init];_categoryView.delegate self;_categoryView.titleDataSource self;_categoryView.averageCellSpacingEnabled NO; //是否平均分配项目之间的间…...
Centos9 安装VBox增强功能问题
安装步骤 更新gcc 首先手动更新gcc,防止无法兼容最新版本的内核,我这里将gcc 11更新到gcc 13 1.首先更新当前gcc和支持 yum install -y gcc gcc-c 2.下载新版本gcc压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-13.1.0/gcc-13.1.0.tar.gz 解压到usr ta…...
【JVM】Java虚拟机运行时数据分区介绍
JVM 分区(运行时数据区域) 文章目录 JVM 分区(运行时数据区域)前言1. 程序计数器2. Java 虚拟机栈3. 本地方法栈4. Java 堆5. 方法区6. 运行时常量池7. 直接内存 前言 之前在说多线程的时候,提到了JVM虚拟机的分区内存…...
大数据面试题之Kafka(2)
目录 Kafka的工作原理? Kafka怎么保证数据不丢失,不重复? Kafka分区策略 Kafka如何尽可能保证数据可靠性? Kafka数据丢失怎么处理? Kafka如何保证全局有序? 生产者消费者模式与发布订阅模式有何异同? Kafka的消费者组是如何消费数据的 Kafka的…...
前端面试题(基础篇十一)
一、DOCTYPE 的作用是什么? <!DOCTYPE> 声明一般位于文档的第一行,它的作用主要是告诉浏览器以什么样的模式来解析文档。一般指定了之后会以标准模式来进行文档解析,否则就以兼容模式进行解析。在标准模式下,浏览器的解析规…...
【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques
Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…...
Git Flow 工作流学习要点
Git Flow 工作流学习要点 Git Flow — 流程图Git Flow — 操作指令优点:缺点:Git Flow 分支类型Git Flow 工作流程简述关于 feature 分支关于 Release 分支关于 hotfix 分支 总结 Git Flow — 流程图 图片来源:https://nvie.com/posts/a-succ…...
blender 快捷键 常见问题
一、快捷键 平移视图:Shift 鼠标中键旋转视图:鼠标中键缩放视图:鼠标滚动框选放大模型:Shift B线框预览和材质预览切换:Shift Z 二、常见问题 问题:导入模型成功,但是场景中看不到。 解…...
HTTP详解:TCP三次握手和四次挥手
一、TCP协议概述 TCP协议是互联网协议栈中传输层的核心协议之一,它提供了一种可靠的数据传输方式,确保数据包按顺序到达,并且没有丢失或重复。TCP的主要特点包括: 面向连接:TCP在传输数据之前需要建立连接。可靠传输&…...
详解HTTP:有了HTTP,为何需要WebSocket?
在日常生活中,HTTP 常用于请求数据。例如,当你打开一个天气预报网站时,浏览器会发送一个 HTTP 请求到服务器,请求当前的天气数据,服务器返回响应,浏览器解析并显示这些数据。 但是,当涉及到需要…...
Spring Boot 启动流程是怎么样的
引言 SpringBoot是一个广泛使用的Java框架,旨在简化基于Spring框架的应用程序的开发过程。在这篇文章中,我们将深入探讨SpringBoot应用程序的启动流程,了解其背后的机制。 Spring Boot 启动概览 SpringBoot应用程序的启动通常从一个包含 m…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
