Vip-智能预估+大数据标签+人群全选=用户分群!
Mobpush用户分群功能升级,创建推送入口vip用户可进入自有选择标签创建“用户分群”,相比于免费标签,“用户标签”维度更丰富。在应用基础属性上,增加“品牌”、“网络状态”、“运营商”,众所周知,不同厂商对于推送的条数、内容长度、图片大小的要求并不完全一致,为了更适配厂商的要求,mobpush将这些基础属性进行了进一步的细分,有利于运营能更精细的控制下发的内容,将信息更好的传达给用户。
用户行为属性,相比标签推送,增加点击推送消息行为天数维度,将活跃度与点击行为相结合,精确圈选“有效行为”人数,实现精细化运营。
智能标签在地理位置基础上,增加了性别、年龄、学历、收入、婚姻状态、行业、消费水平、人群细分、人生阶段等画像维度,开发者可根据应用的画像描述,进行人群划分,利用mob智能标签真正实现千人千面。
规则上,相比标签推送,用户分群既支持属性之间的并集,又支持属性之间交集关系。通过点击“或”/”且”按钮完成配置。
这里注意下,每个人群包我们都是默认为手动更新,如需每日更新要更改下配置。如果30天内未使用,分组人群会自动修改为手动更新。
使用场景1:
某游戏类app目前提升用户roi,该公司运营通过圈选近7天内有活跃,自有标签中未付费的用户,选择中等消费(有氪金)行为的用户进行了二次推送,点击转化付费用户,对比通用组roi提升12%
使用场景2:
某天气类应用利用mob提供的地理位置标签及个性化参数,实现了节省了80%的运营人力,根据mob提供的数据分析有效的实现了精细化数据监控,将重点精力投放到产品功能的建设中,为项目大量节省了人力成本和时间。
相关文章:

Vip-智能预估+大数据标签+人群全选=用户分群!
Mobpush用户分群功能升级,创建推送入口vip用户可进入自有选择标签创建“用户分群”,相比于免费标签,“用户标签”维度更丰富。在应用基础属性上,增加“品牌”、“网络状态”、“运营商”,众所周知,不同厂商…...

SpringBoot异常处理机制之自定义404、500错误提示页面 - 518篇
历史文章(文章累计500) 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 《…...

为什么选择Xinstall CPA结算系统?因为它能帮您解决这些痛点!
在App推广和运营的道路上,我们时常面临着各种挑战和痛点。其中,结算系统的复杂性和不透明性往往成为制约我们发展的瓶颈。然而,有了Xinstall CPA结算系统,这些问题将迎刃而解,让您的App推广之路更加顺畅和高效。 一、…...

2024年【建筑电工(建筑特殊工种)】模拟试题及建筑电工(建筑特殊工种)作业考试题库
题库来源:安全生产模拟考试一点通公众号小程序 2024年建筑电工(建筑特殊工种)模拟试题为正在备考建筑电工(建筑特殊工种)操作证的学员准备的理论考试专题,每个月更新的建筑电工(建筑特殊工种)作业考试题库祝您顺利通过建筑电工(建筑特殊工种)考试。 1、…...
解锁数字化转型的双引擎:MSP和CMP的力量
随着企业数字化转型的深入,云计算已经成为现代企业IT基础设施的重要组成部分。为了高效地管理和优化多云环境,企业通常会依赖管理服务提供商 (Managed Service Providers, MSP) 和云管理平台 (Cloud Management Platforms, CMP)。本文将探讨MSP和CMP的定…...

Pyecharts入门
数据可视化 Pyecharts简介 Apache ECharts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时&#…...

Socket编程详解(一)服务端与客户端的双向对话
目录 预备知识 视频教程 项目前准备知识点 1、服务器端程序的编写步骤 2、客户端程序编写步骤 代码部分 1、服务端FrmServer.cs文件 2、客户端FrmClient.cs文件 3、启动文件Program.cs 结果展示 预备知识 请查阅博客http://t.csdnimg.cn/jE4Tp 视频教程 链接&#…...
使用Python实现深度学习模型:强化学习与深度Q网络(DQN)
深度Q网络(Deep Q-Network,DQN)是结合深度学习与强化学习的一种方法,用于解决复杂的决策问题。本文将详细介绍如何使用Python实现DQN,主要包括以下几个方面: 强化学习简介DQN算法简介环境搭建DQN模型实现模型训练与评估1. 强化学习简介 强化学习是一种训练智能体(agent…...

Py-Spy、Scalene 和 VizTracer 的对比分析
在前几篇文章中,我们详细介绍了如何使用 py-spy、scalene 和 viztracer 进行性能分析和优化。今天,我们将对这三个性能分析工具进行详细对比,帮助你选择最适合你的工具。 工具简介 Py-Spy: 实时性能分析:Py-Spy 可以…...
软考架构师考试内容
软考系统架构设计师考试是中国计算机技术与软件专业技术资格(水平)考试(简称软考)中的一项高级资格考试,旨在评估考生是否具备系统架构设计的能力。根据提供的参考资料,考试内容主要包括以下几个方面&#…...

【MySQL基础篇】概述及SQL指令:DDL及DML
数据库是一个按照数据结构来组织、存储和管理数据的仓库。以下是对数据库概念的详细解释:定义与基本概念: 数据库是长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。 数据库不仅仅是数据的简单堆积,而是遵循一定的规则…...

计算机网络 —— 网络字节序
网络字节序 1、网络字节序 (Network Byte Order)和本机转换 1、大端、小端字节序 “大端” 和” 小端” 表示多字节值的哪一端存储在该值的起始地址处;小端存储在起始地址处,即是小端字节序;大端存储在起始地址处,即是大端字节…...
区块链不可能三角
区块链不可能三角:探索去中心化、安全与可扩展性的权衡 引言 区块链技术自诞生以来,以其去中心化、透明、安全等特点吸引了全球的关注,成为金融科技领域的重要革新力量。然而,随着区块链应用的日益广泛,一个核心问题…...

新手第一个漏洞复现:MS17-010(永恒之蓝)
文章目录 漏洞原理漏洞影响范围复现环境复现步骤 漏洞原理 漏洞出现在Windows SMB v1中的内核态函数srv!SrvOs2FeaListToNt在处理FEA(File Extended Attributes)转换时。该函数在将FEA list转换成NTFEA(Windows NT FEA)list前&am…...
代码随想录Day64
98.所有可达路径 题目:98. 所有可达路径 (kamacoder.com) 思路:果断放弃 答案 import java.util.*;public class Main {private static List<List<Integer>> adjList;private static List<List<Integer>> allPaths;private sta…...
Angular 指令
Angular 指令是 Angular 框架中的一项核心功能,它允许开发人员扩展 HTML 的功能,并创建可复用的组件和行为。以下是一些常见的 Angular 指令: 1. 组件指令 (Component Directives) 组件指令是最常用的一种指令,用于创建可复用的 U…...

移动端 UI 风格,书写华丽篇章
移动端 UI 风格,书写华丽篇章...

flutter开发实战-ListWheelScrollView与自定义TimePicker时间选择器
flutter开发实战-ListWheelScrollView与自定义TimePicker 最近在使用时间选择器的时候,需要自定义一个TimePicker效果,当然这里就使用了ListWheelScrollView。ListWheelScrollView与ListView类似,但ListWheelScrollView渲染效果类似滚筒效果…...

stable diffusion 模型和lora融合
炜哥的AI学习笔记——SuperMerger插件学习 - 哔哩哔哩接下来学习的插件名字叫做 SuperMerger,它的作用正如其名,可以融合大模型或者 LoRA,一般来说会结合之前的插件 LoRA Block Weight 使用,在调整完成 LoRA 模型的权重后使用改插件进行重新打包。除了 LoRA ,Checkpoint 也…...
Spring Boot中的分布式缓存方案
Spring Boot中的分布式缓存方案 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨在Spring Boot应用中实现分布式缓存的方案,以提升系统…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...

CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
中科院1区顶刊|IF14:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点 当下,免疫与代谢性疾病的关联研究已成为生命科学领域的前沿热点。随着研究的深入,我们愈发清晰地认识到免疫系统与代谢系统之间存在着极为复…...

作为点的对象CenterNet论文阅读
摘要 检测器将图像中的物体表示为轴对齐的边界框。大多数成功的目标检测方法都会枚举几乎完整的潜在目标位置列表,并对每一个位置进行分类。这种做法既浪费又低效,并且需要额外的后处理。在本文中,我们采取了不同的方法。我们将物体建模为单…...

关于 ffmpeg设置摄像头报错“Could not set video options” 的解决方法
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/148515355 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
【免杀】C2免杀技术(十五)shellcode混淆uuid/ipv6/mac
针对 shellcode 混淆(Shellcode Obfuscation) 的实战手段还有很多,如下表所示: 类型举例目的编码 / 加密XOR、AES、RC4、Base64、Poly1305、UUID、IP/MAC改变字节特征,避开静态签名或 YARA结构伪装PE Stub、GIF/PNG 嵌入、RTF OLE、UUID、IP/MAC看起来像合法文件/数据,弱…...