当前位置: 首页 > news >正文

【8.索引篇】

索引分类

索引和数据就是位于存储引擎中:

  • 按「数据结构」分类:B+tree索引、Hash索引、Full-text索引。
  • 按「物理存储」分类:聚簇索引(主键索引)、二级索引(辅助索引)。
  • 按「字段特性」分类:主键索引、唯一索引、普通索引、前缀索引。
  • 按「字段个数」分类:单列索引、联合索引。

为什么 MySQL InnoDB 选择 B+tree 作为索引的数据结构?

1、B+Tree vs B Tree

  • B+Tree 只在叶子节点存储数据,而 B 树 的非叶子节点也要存储数据,所以 B+Tree 的单个节点的数据量更小,在相同的磁盘 I/O 次数下,就能查询更多的节点。

  • 另外,B+Tree 叶子节点采用的是双链表连接,适合 MySQL 中常见的基于范围的顺序查找,而 B 树无法做到这一点。

2、B+Tree vs 二叉树

  • 对于有 N 个叶子节点的 B+Tree,其搜索复杂度为O(logdN),其中 d 表示节点允许的最大子节点个数为 d 个。

  • 在实际的应用当中, d 值是大于100的,这样就保证了,即使数据达到千万级别时,B+Tree 的高度依然维持在 3~4 层左右,也就是说一次数据查询操作只需要做 3~4 次的磁盘 I/O 操作就能查询到目标数据。

  • 而二叉树的每个父节点的儿子节点个数只能是 2 个,意味着其搜索复杂度为 O(logN),这已经比 B+Tree 高出不少,因此二叉树检索到目标数据所经历的磁盘 I/O 次数要更多。

3、B+Tree vs Hash

  • Hash 在做等值查询的时候效率贼快,搜索复杂度为 O(1)。

  • Hash需要一次性将数据加载到内存中,如果数据比较大,则加载时间长,而B+tree是分节点加载数据

  • 但是 Hash 表不适合做范围查询,它更适合做等值的查询,这也是 B+Tree 索引要比 Hash 表索引有着更广泛的适用场景的原因。

聚簇索引(主键索引)、二级索引(辅助索引)

  • 主键索引的 B+Tree 的叶子节点存放的是实际数据,所有完整的用户记录都存放在主键索引的 B+Tree 的叶子节点里;
    二级索引的 B+Tree 的叶子节点存放的是主键值,而不是实际数据。
  • 覆盖索引
    • 在查询时使用了二级索引,如果查询的数据能在二级索引里查询的到(也就是查询的数据是主键值),不需要读取索引中的数据,只需要查一个 B+ 树就能找到数据,那么就不需要回表,这个过程就是覆盖索引。
  • 回表
    • 如果某个查询语句使用了二级索引,但是查询的数据不是主键值,这时找到对应的叶子节点,获取到主键值后,需要去聚簇索引中获得数据行,就能查询到数据了,这个过程就是回表。

InnoDB 在创建聚簇索引时,会根据不同的场景选择不同的列作为索引:

  • 如果有主键,默认会使用主键作为聚簇索引的索引键;
  • 如果没有主键,就选择第一个不包含 NULL 值的唯一列作为聚簇索引的索引键;
  • 在上面两个都没有的情况下,InnoDB 将自动生成一个隐式自增 id 列作为聚簇索引的索引键;

一张表只能有一个聚簇索引,那为了实现非主键字段的快速搜索,就引出了二级索引

字段特性

主键索引:

  • 建立在主键字段上的索引,通常在创建表的时候一起创建,一张表最多只有一个主键索引,索引列的值不允许有空值。

唯一索引:

  • 建立在 UNIQUE 字段上的索引,一张表可以有多个唯一索引,索引列的值必须唯一,但是允许有空值。

普通索引

  • 就是建立在普通字段上的索引,既不要求字段为主键,也不要求字段为 UNIQUE。

前缀索引

  • 是指对字符类型字段的前几个字符建立的索引,而不是在整个字段上建立的索引,前缀索引可以建立在字段类型为 char、 varchar、binary、varbinary 的列上。使用前缀索引的目的是为了减少索引占用的存储空间,提升查询效率。

单列索引和联合索引

  • 建立在单列上的索引称为单列索引,比如主键索引;
  • 建立在多列上的索引称为联合索引;

联合索引范围

  • 联合索引查询,不代表联合索引中的所有字段都用到了联合索引进行索引查询,可能存在部分字段用到联合索引的 B+Tree,部分字段没有用到联合索引的 B+Tree 的情况。
  • 联合索引的最左匹配原则会一直向右匹配直到遇到「范围查询」就会停止匹配。也就是范围查询的字段可以用到联合索引,但是在范围查询字段的后面的字段无法用到联合索引。
  • 注意,对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配
select * from t_table where a > 1 and b = 2

单列索引与联合索引区别

  • 组成方式:单列索引只包含一列,而联合索引则由多列组成。
  • 使用范围:单列索引适用于单列查询,联合索引适用于多列查询
  • 索引大小:联合索引的大小通常比单列索引大
  • 更新操作:联合索引,如果更新操作涉及到了索引的任何一列,都会导致索引重建,单列索引,只有更新涉及到了该列才会导致索引重建
  • 单列索引适用于单列查询,适用于频繁更新的情况;而联合索引适用于多列查询,适用于读操作多、写操作少的情况

联合索引相比单列索引有什么优点

  • 联合索引在进行查询过程中,可能索引列就是我们要查询的数据,使用覆盖索引,避免了回表操作,减少IO次数,提高查询性能

最左匹配原则

  • 在使用多列索引时,如果查询中包含索引的第一个列,则可以利用该索引进行搜索;如果查询中不包含索引的第一个列,则无法使用该索引。

索引下推原理

  • 一般在联合索引来优化查询,但是,在某些情况下,联合索引并不完全适用于所有的查询条件,于是从 MySQL 5.6 之后使用索引下推
  • 可以在联合索引遍历过程中,对联合索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。(在引擎层判断数据是否合法,如果合法直接返回,如果不合法继续判断,减少回表操作)

索引下推原理

  • 截断的字段不会在 Server 层进行条件判断,而是会被下推到「存储引擎层」进行条件判断(因为 c 字段的值是在 (a, b, c) 联合索引里的),然后过滤出符合条件的数据后再返回给 Server 层。由于在引擎层就过滤掉大量的数据,无需再回表读取数据来进行判断,减少回表次数,从而提升了性能。

Innodb的B+Tree、BTree、二级索引、MyISAM的B+Tree

  • Innodb的B+Tree:非叶子节点存放索引值,叶子结点存放数值(索引即文件)
  • BTree:非叶子结点与叶子结点都存放数据
  • 二级索引:非叶子结点存放索引值,叶子结点存放的是主键值
  • MyISAM的B+Tree:非叶子结点存放索引值,叶子结点存放指向数据的指针。(索引与文件分开)

索引失效

  • 当我们使用左或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx%这两种方式都会造成索引失效;
  • 当我们在查询条件中对索引列使用函数,就会导致索引失效。
  • 当我们在查询条件中对索引列进行表达式计算,也是无法走索引的。
  • MySQL 在遇到字符串和数字比较的时候,会自动把字符串转为数字,然后再进行比较。如果字符串是索引列,而条件语句中的输入参数是数字的话,那么索引列会发生隐式类型转换,由于隐式类型转换是通过 CAST 函数实现的,等同于对索引列使用了函数,所以就会导致索引失效。
  • 联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。
  • 在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。

MySQL 使用 like “%x“,索引不一定会失效

  • 当表中的字段全部都使用到了索引,例如表中只有id和name俩列,id为主键索引,name为二级索引
  • 这张表的字段没有「非索引」字段,所以select *相当于 select id,name,然后这个查询的数据都在二级索引的 B+ 树,因为二级索引的 B+ 树的叶子节点包含「索引值+主键值」,所以查二级索引的 B+ 树就能查到全部结果了,这个就是覆盖索引。
  • 但是执行计划里的 type 是 index,这代表着是通过全扫描二级索引的 B+ 树的方式查询到数据的,也就是遍历了整颗索引树。
    在这里插入图片描述

文章总结https://www.xiaolincoding.com/

相关文章:

【8.索引篇】

索引分类 索引和数据就是位于存储引擎中&#xff1a; 按「数据结构」分类&#xff1a;Btree索引、Hash索引、Full-text索引。按「物理存储」分类&#xff1a;聚簇索引&#xff08;主键索引&#xff09;、二级索引&#xff08;辅助索引&#xff09;。按「字段特性」分类&#…...

MySQL InnoDB存储引擎锁与事务实现原理解析(未完成)

InnoDB MySQL存储引擎是基于表的&#xff0c;也就是说每张表可以选择不同的存储引擎。 InnoDB存储引擎的表是索引组织的&#xff0c;也就是数据即索引。 存储引擎文件 InnoDB引擎会包含RedoLog重做日志文件和TableSpace表空间文件。 表空间文件 默认表空间文件&#xff08…...

P1683 入门(洛谷)JAVA

题目描述&#xff1a; 不是任何人都可以进入桃花岛的&#xff0c;黄药师最讨厌像郭靖一样呆头呆脑的人。所以&#xff0c;他在桃花岛的唯一入口处修了一条小路&#xff0c;这条小路全部用正方形瓷砖铺设而成。有的瓷砖可以踩&#xff0c;我们认为是安全的&#xff0c;而有的瓷砖…...

yocto编译烧录和脚本解析

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录前言一、初始化构建目录二、imx-setup-release.sh脚本解析三、编译单独编译内核四、烧录总结前言 本篇文章主要讲解如何在下载好源码之后进行编译和yocto的脚本解析…...

Proteus 8.15安装包安装教程

Proteus介绍Proteus的介绍Proteus8.15安装包Proteus8.15安装教程Proteus的介绍 Proteus是英国著名的EDA工具(仿真软件)&#xff0c;从原理图布图、代码调试到单片机与外围电路协同仿真&#xff0c;一键切换到PCB设计&#xff0c;真正实现了从概念到产品的完整设计。是世界上唯…...

Spring——AOP工作流程

AOP就是代理模式的开发简化 1.Spring容器启动 因为AOP是要将通知类作为一个bean对象交给spring进行管理的&#xff0c;还有经过通知类被增强的类。 此时还没有创建bean对象 2.读取所有切面配置中的切入点 在下面这段代码中&#xff0c;定义了两个切入点&#xff0c;但是只…...

c++11多线程之condition_variable、wait()、notify_one()、notify_all()的使用。

系列文章目录 文章目录系列文章目录前言一、基本概念1.1 std::condition_variable1.2 wait()函数1.2.1 wait()带第二个参数1.2.2 wait()不带第二个参数1.2.3 当其他线程用notify_one()或notify_all&#xff08;&#xff09;1.3 notify函数二、代码实例总结前言 C11多线程&…...

skywalking扩展实现 —— 监控数据的动态上报

把标题名整高大上一些&#xff0c;来掩盖需求的奇葩。 0. 目录1. 需求背景2. 需求描述3. 优势4. 实现4.1 扩展点4.2 配置项5. 优化6. 提醒7. 补充 - 关于微服务8. 参考1. 需求背景 过去一段时间&#xff0c;接手了一个迭代了数年的"基于微服务架构"搭建的产品。 自…...

【GoF 23】23种设计模式与OOP七大原则概述

1. 什么是GoF 23&#xff1f; GoF 23也就是23种设计模式。1995年GoF&#xff08;Gang of Four&#xff0c;四人组/四人帮&#xff09;合作出版了《设计模式&#xff1a;可复用面向对象软件的基础》一书&#xff0c;一共收录了23种设计模式&#xff0c;从此梳理了软件设计模式领…...

Java 日期时间

Java 日期时间是 Java 标准库中一个非常重要的部分&#xff0c;它提供了丰富的 API 来处理日期、时间以及日期时间。在 Java 应用程序中&#xff0c;我们经常需要处理日期时间相关的操作&#xff0c;例如计算两个日期之间的差、将日期时间转换为不同的时区等。在本篇文章中&…...

Face Forgery Suvery

文章目录Face ForgeryFace Forgery classAttribute ManipulationExpression SwapIdentity SwapEntire Face SynthesisFace Forgery DetectionLow-levelOn the Detection of Digital Face Manipulation(CVPR2020)High-levelProtecting World Leaders Against Deep FakesDetectin…...

案例学习--016 消息队列作用和意义

简介MQ全称为Message Queue, 是一种分布式应用程序的的通信方法&#xff0c;它是消费-生产者模型的一个典型的代表&#xff0c;producer往消息队列中不断写入消息&#xff0c;而另一端consumer则可以读取或者订阅队列中的消息。主要产品有&#xff1a;ActiveMQ、RocketMQ、Rabb…...

【MySQL】MySQL的锁机制

目录 概述 MyISAM 表锁 InnoDB行锁 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制&#xff08;避免争抢&#xff09;。 在数据库中&#xff0c;除传统的 计算资源&#xff08;如 CPU、RAM、I/O 等&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共…...

HTML 背景

一个富有美感的背景会让站点看上去更加高级、更有吸引力。本篇为大家来的是 HTML 背景相关内容。 背景&#xff08;Backgrounds&#xff09; <body> 拥有两个配置背景的标签。背景可以是颜色或者图像。 背景颜色&#xff08;Bgcolor&#xff09; 背景颜色属性将背景设…...

Lombok

文章目录简介原理安装常用Getter、SetterToStringEqualsAndHashCodeNonNullNoArgsConstructor、RequiredArgsConstructor、AllArgsConstructorDATABuilderLogvalCleanup简介 Project Lombok is a java library that automatically plugs into your editor and build tools, spi…...

Koa源码学习

前言 koa是一个非常流行的Node.js http框架。本文我们来学习下它的使用和相关源码 来自官网的介绍&#xff1a; Koa 是一个新的 web 框架&#xff0c;由 Express 幕后的原班人马打造&#xff0c; 致力于成为 web 应用和 API 开发领域中的一个更小、更富有表现力、更健壮的基石。…...

一种延迟加载自定义元素的方法

您可能实际上并不需要所有这些&#xff1b;通常有一个更简单的方法。如果有意使用&#xff0c;此处显示的技术可能仍然对您的工具集有用。 为了保持一致性&#xff0c;我们希望我们的自动加载器也成为一个自定义元素——这也意味着我们可以通过 HTML 轻松配置它。但首先&#…...

Pytho经典面试题荟萃:第一期

目录 一、面试题 二、参考答案 解释器和编译器的区别 解释器 编译器 Python 的解释过程 Python 内存管理 Python 内存分配 引用计数 垃圾回收 其他内存管理技术 多重继承 多重继承带来的问题 命名冲突 菱形继承问题 解决多重继承带来的问题 方法重写 调用 su…...

01背包问题(大彻大悟版)

背包问题身为一个非常经典的动态规划问题&#xff0c;理清思路很重要&#xff0c;在经过多次观看y总视频和b站解析&#xff0c;加上CSDN的文章辅助&#xff0c;我终于从很多不理解到大彻大悟&#xff0c;下面是我对于背包问题思路的总结&#xff0c;有问题的话欢迎指出。谈到背…...

【麒麟服务器操作系统忘记开机密码怎么办?---银河麒麟服务器操作系统更改用户密码】

银河麒麟服务器操作系统更改用户密码 1.启动主机进入 grub 菜单&#xff0c;如图 1.1 以最新版本 Kylin-Server-10-SP2-x86-Release-Build09-20210524 为例。 图 1.1 grub 菜单 2 编辑 kernel 2.1按下”e”输入&#xff0c;输入用户名和密码&#xff08;root/Kylin123123&…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...