当前位置: 首页 > news >正文

Leetcode - 133双周赛

目录

一,3190. 使所有元素都可以被 3 整除的最少操作数

二,3191. 使二进制数组全部等于 1 的最少操作次数 I

三,3192. 使二进制数组全部等于 1 的最少操作次数 II

四,3193. 统计逆序对的数目


一,3190. 使所有元素都可以被 3 整除的最少操作数

本题可以直接模拟,如果使用减法操作,那么需要操作 x % 3 次;如果使用加法操作,那么需要操作 3 - x % 3 次。问最少的操作次数,直接取两者的最小值就行。

代码如下:

class Solution {public int minimumOperations(int[] nums) {int ans = 0;for(int x : nums){ans += Math.min(Math.abs(3-x%3), x%3);}return ans;}
}

二,3191. 使二进制数组全部等于 1 的最少操作次数 I

本题直接从左往右遍历,注 i < nums.length-2 :

  • 遇到0,将nums[i],nums[i+1],nums[i+2] 反转(即 ^1),ans++
  • 遇到1,什么都不做
  • 循环结束判断后两个数是否全为1,如果是,返回ans;否则返回-1

代码如下:

class Solution {public int minOperations(int[] nums) {int ans = 0;int i = 0;for(; i<nums.length-2; i++){if(nums[i]==0){nums[i] ^= 1;nums[i+1] ^= 1;nums[i+2] ^= 1;ans++;}}return nums[i]==1 && nums[i+1]==1 ? ans : -1;}
}

三,3192. 使二进制数组全部等于 1 的最少操作次数 II

本题也可以采用上述做法,代码如下:

class Solution {public int minOperations(int[] nums) {int n = nums.length;int ans = 0;for(int i=0; i<n; i++){if(nums[i] == 0){for(int j=i; j<n; j++)nums[j] ^= 1;ans++;}}return ans;}
}

但是该做法是O(n^2)的时间复杂度,会超时,那么上述做法还有哪里可以优化?可以发现如果一个数执行 ^1操作偶数次,它就会变回原来的值,所以我们可以统计后续元素需要执行反转操作的次数cnt,在枚举到x时,如果cnt为奇数,x ^=1,再判断 x 是否为 0,如果为0,cnt++。依次类推,最终得到的cnt就是答案。

代码如下:

class Solution {public int minOperations(int[] nums) {int ans = 0;for(int i=0; i<nums.length; i++){if(ans%2==1)nums[i] ^= 1;if(nums[i] == 0){ans++;}}return ans;}
}

四,3193. 统计逆序对的数目

本题可以从后先前考虑,假设有3个数,构造逆序对为2的排序:

  • 如果最后一个数是2,那么该数与[0,i-1]能组成0个逆序对,就需要[0,i-1]有2个逆序对
  • 如果最后一个数是1,那么该数与[0,i-1]能组成1个逆序对,就需要[0,i-1]有1个逆序对
  • 如果最后一个数是0,那么该数与[0,i-1]能组成2个逆序对,就需要[0,i-1]有0个逆序对

依次类推,上述问题就化成了与原问题相同的子问题。可以定义dfs(i,j):前 i 个数有 j 个逆序对时的排序个数。

  • 没有requirements束缚,假设 k 为 perm[i] 小于[0,i-1]元素的个数,即 perm[i] 能产生 k 个逆序对,那么问题就转换成了前 i-1个数有 j - k 个逆序对的排序个数。(注:k <= Math.min(i,j))
  • 有requirements束缚,该问题就只能转换成前 i-1个数有 req[i-1] 个逆序对的排序个数。(注:req[i-1] <= j && req[i-1] >= j - i,这两个条件就表示req[i-1]的范围必须在[ j - i,j],可以这样理解,当前perm[i]能与前i-1个数组成[0,i]个逆序对,那么前i-1个数需要有[j - i,j]个逆序对)

代码如下:

class Solution {public int numberOfPermutations(int n, int[][] requirements) {int[] req = new int[n];Arrays.fill(req, -1);req[0] = 0;for(int[] x : requirements){req[x[0]] = x[1];}if(req[0]>0) return 0; for(int[] r : memo)Arrays.fill(r, -1);return dfs(n-1, req[n-1], req);}int[][] memo = new int[301][401];int dfs(int i, int j, int[] req){if(i == 0) return 1;if(memo[i][j] != -1) return memo[i][j];int res = 0;int cnt = req[i-1];if(cnt >= 0){if(cnt <= j && cnt >= j-i)res = dfs(i-1, cnt, req);}else{for(int k=0; k<=Math.min(i, j); k++){res = (res + dfs(i-1, j-k, req))%1_000_000_007;}}return memo[i][j] = res;}
}

相关文章:

Leetcode - 133双周赛

目录 一&#xff0c;3190. 使所有元素都可以被 3 整除的最少操作数 二&#xff0c;3191. 使二进制数组全部等于 1 的最少操作次数 I 三&#xff0c;3192. 使二进制数组全部等于 1 的最少操作次数 II 四&#xff0c;3193. 统计逆序对的数目 一&#xff0c;3190. 使所有元素都…...

C++总结

...

汽车免拆诊断案例 | 2016 款吉利帝豪EV车无法加速

故障现象 一辆2016款吉利帝豪EV车&#xff0c;累计行驶里程约为28.4万km&#xff0c;车主反映车辆无法加速。 故障诊断 接车后路试&#xff0c;行驶约1 km&#xff0c;踩下加速踏板&#xff0c;无法加速&#xff0c;车速为20 km/h左右&#xff0c;同时组合仪表上的电机及控制…...

前端开发之webpack

安装与入门超详细&#xff01;webpack入门教程(一)-腾讯云开发者社区-腾讯云...

将内容复制到剪贴板?分享 1 段优质 JS 代码片段!

大家好&#xff0c;我是大澈&#xff01; 本文约 600 字&#xff0c;整篇阅读约需 1 分钟。 每日分享一段优质代码片段。 今天分享一段 JS 代码片段&#xff0c;使用 Clipboard API 实现将内容复制到剪贴板。 老规矩&#xff0c;先阅读代码片段并思考&#xff0c;再看代码解析…...

MAS0902量产工具分享,MAS0902A开卡教程,MAS0901量产工具下载

MAS0902和MAS1102都是基于SATA3.2技术开发的DRAM-less SSD控制芯片&#xff0c;简单来说就是SATA协议无缓存主控。下面是我摸索的麦光黑金300 240G SSD开卡修复简易教程&#xff0c;也就是MAS0902量产过程&#xff1a; 注意&#xff1a;开卡转接线必须要用ASM1153E或JMS578主控…...

从我邮毕业啦!!!

引言 时间过的好快&#xff0c;转眼间就要从北邮毕业了&#xff0c;距离上一次月度总结又过去了两个月&#xff0c;故作本次总结。 PS: https://github.com/WeiXiao-Hyy/blog整理了后端开发的知识网络&#xff0c;欢迎Star&#xff01; 毕业&#x1f393; 6月1号完成了自己的…...

gemini 1.5 flash (node项目)

https://www.npmjs.com/package/google/generative-ai https://ai.google.dev/pricing?hlzh-cn https://aistudio.google.com/app/apikey https://ai.google.dev/gemini-api/docs/models/gemini?hlzh-cn#gemini-1.5-flash https://ai.google.dev/gemini-api/docs/get-started…...

在线字节大端序小端序转换器

具体请前往&#xff1a;在线字节大端序小端序转换器...

css_17_背景属性鼠标属性

一.背景属性 -属性值&#xff1a;background-color&#xff08;设置背景颜色&#xff09; 默认背景颜色是 transparent。 -属性值&#xff1a;background-image&#xff08;设置背景图片&#xff09; url&#xff08;图片的地址&#xff09; -属性值&#xff1a;background-re…...

Python hash编码(go hash编码)

id"中国人" 首先&#xff0c;go语言hash: import (mmh3 "murmurhash3") mmh3.Murmurhash3([]byte(id)) 对应到Python hash编码&#xff0c;可以直接使用mmh3 import mmh3 mmh3.hash(id,signedFalse) 其源码可以表示为 def sum32WithSeed(datas, seed…...

004 插入排序(lua)

文章目录 123 1 -- Lua中没有类和方法的概念&#xff0c;所以我们将所有功能都写在一个脚本中 -- 交换数组中两个元素的功能 local function swap(arr, i, j) local temp arr[i] arr[i] arr[j] arr[j] temp end -- 插入排序算法的实现 local function insertionS…...

计算机网络 —— 基本概念

基本概念 1. 通信协议2. 面向连接 v.s. 面向无连接3. 电路交换 v.s. 分组交换4. 单工通信 v.s. 双工通信 1. 通信协议 通信协议就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU 以及不同的操作系统组成的计算…...

高精度除法的实现

高精度除法与高精度加法的定义、前置过程都是大致相同的&#xff0c;如果想了解具体内容&#xff0c;可以移步至我的这篇博客&#xff1a;高精度加法计算的实现 在这里就不再详细讲解&#xff0c;只讲解主体过程qwq 主体过程 高精度除法的原理和小学学习的竖式除法是一样的。 …...

STM32CUBEMX配置USB虚拟串口

STM32CUBEMX配置USB虚拟串口 cubemx上默认配置即可。 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 配置完后生成工程&#xff0c;主要就是要知道串口的收发接口就行了。 发送&#xff1a;CDC_Transmit_FS()&#xff0c;同时记得包含头文件#include “…...

安卓开发中margin和padding的区别

在 Android 开发中&#xff0c;margin 和 padding 都是用来定义视图&#xff08;View&#xff09;的空间属性&#xff0c;但它们的作用和应用场景有所不同&#xff1a; Margin&#xff08;外边距&#xff09;&#xff1a; Margin 是视图与其他视图之间的空间。它定义了视图之间…...

Symfony事件调度系统:掌控应用程序生命周期的钥匙

Symfony事件调度系统&#xff1a;掌控应用程序生命周期的钥匙 引言 Symfony是一个高度灵活的PHP框架&#xff0c;用于构建各种规模的Web应用程序。它的核心特性之一是事件调度系统&#xff0c;该系统允许开发者在应用程序的生命周期中触发和监听事件。这种机制为开发者提供了…...

maven安装jar和pom到本地仓库

举例子我们要将 elastic-job-spring-boot-starter安装到本地的maven仓库&#xff0c;如下&#xff1a; <dependency><groupId>com.github.yinjihuan</groupId><artifactId>elastic-job-spring-boot-starter</artifactId><version>1.0.5&l…...

[leetcode]assign-cookies. 分发饼干

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());sort(s.begin(), s.end());int m g.size(), n s.size();int count 0;for (int i 0, j 0; i…...

如何轻松解决复杂文档格式转换问题

上周&#xff0c;我遇到了一个棘手的问题&#xff1a;需要将一大堆PDF文件转换成可编辑的Word文档&#xff0c;时间紧迫&#xff0c;手动转换根本来不及。朋友推荐我使用了一个网站——xuelin.cc&#xff0c;这个网站不仅提供强大的AI对话功能&#xff0c;还能轻松完成各种文档…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...