算法金 | 协方差、方差、标准差、协方差矩阵
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」
抱个拳,送个礼
1. 方差
方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在数据分析和机器学习中,方差常用于描述数据集的变异情况
1.1 定义与计算方法 方差的计算方法如下:
- 计算数据集的均值(平均值)
- 计算每个数据点与均值的差值
- 将这些差值平方
- 将平方后的差值相加
- 将总和除以数据点的数量
方差的公式为:
1.2 实际应用 方差在许多领域都有广泛应用。例如,在金融领域,方差用来衡量投资回报率的波动性。在质量控制中,方差用来衡量生产过程的稳定性。在机器学习中,方差用于评估模型的性能和稳定性
1.3 示例
假设我们有一组数据:[1, 2, 3, 4, 5]
2. 标准差
标准差是方差的平方根,是另一种度量数据分散程度的指标。标准差与方差一样,反映了数据点与均值之间的偏离程度,但标准差的单位与数据本身一致,因此更容易解释和理解
2.1 定义与计算方法 标准差的计算方法如下:
- 计算数据集的均值(平均值)
- 计算每个数据点与均值的差值
- 将这些差值平方
- 将平方后的差值相加
- 将总和除以数据点的数量,得到方差
- 对方差取平方根,得到标准差
标准差的公式为:
2.2 实际应用 标准差广泛应用于各种领域。例如,在金融领域,标准差用来衡量投资回报率的波动性。在质量控制中,标准差用来衡量生产过程的稳定性。在统计分析和数据科学中,标准差用来描述数据集的离散程度
2.3 示例
继续前面的例子,假设我们有一组数据:[1, 2, 3, 4, 5]
防失联,进免费知识星球,直达算法金 AI 实验室 https://t.zsxq.com/ckSu3
更多内容,见免费知识星球
3. 协方差
协方差是用来衡量两个变量之间关系的一种统计指标。它表示了两个变量如何一起变化:当一个变量变大时,另一个变量是否也变大(正协方差)或变小(负协方差)。协方差的值可以是正、负或零,具体取决于变量之间的关系
3.1 定义与计算方法 协方差的计算方法如下:
- 计算每个变量的均值(平均值)
- 计算每个变量与其均值的差值
- 将两个变量的差值乘积求和
- 将和除以数据点的数量
协方差的公式为:
3.2 实际应用 协方差在许多领域都有广泛应用。例如,在金融领域,协方差用来衡量不同资产回报率之间的相关性。在经济学中,协方差用来分析不同经济指标之间的关系。在机器学习中,协方差用于特征选择和数据预处理
3.3 示例
假设我们有两个变量的数据集:𝑋=[1,2,3,4,5]𝑋=[1,2,3,4,5] 和 𝑌=[2,4,6,8,10]
抱个拳,送个礼
点击 ↑ 领取
4. 协方差矩阵
协方差矩阵是用于描述多个变量之间协方差关系的矩阵。它是一个对称矩阵,其中每个元素表示对应变量对之间的协方差。协方差矩阵在多变量统计分析和机器学习中起着重要作用
4.1 定义与计算方法 协方差矩阵的计算方法如下:
- 计算每个变量的均值(平均值)
- 计算每个变量与其均值的差值
- 计算每对变量之间的协方差
- 将协方差填入矩阵对应位置
协方差矩阵的公式为:
4.2 实际应用 协方差矩阵在数据分析和机器学习中有广泛的应用。例如,在主成分分析(PCA)中,协方差矩阵用于特征降维。在多变量回归分析中,协方差矩阵用于估计回归系数的标准误。在组合投资中,协方差矩阵用于分析不同资产的风险
4.3 示例
假设我们有三个变量的数据集:𝑋1=[1,2,3],𝑋2=[4,5,6],𝑋3=[7,8,9]
防失联,进免费知识星球,直达算法金 AI 实验室
https://t.zsxq.com/ckSu3
5. 各指标之间的关系与对比
在数据分析和统计学中,方差、标准差、协方差及协方差矩阵都是衡量数据分布和变量关系的重要工具。理解它们之间的关系和区别有助于更好地应用这些工具进行分析
5.1 方差与标准差 方差和标准差都是度量数据分散程度的指标,但它们的单位和解释不同
- 方差:方差表示数据点与均值之间的平方差的平均值,单位是数据单位的平方。方差公式为:
- 标准差:标准差是方差的平方根,因此其单位与数据本身一致。标准差公式为:
5.2 标准差与协方差 标准差和协方差虽然都是度量数据分布和关系的指标,但它们用于不同的情景
- 标准差:标准差用于度量单个变量的分散程度,是方差的平方根。它可以帮助我们理解单个变量的波动性
- 协方差:协方差用于度量两个变量之间的关系,表示一个变量变化时另一个变量的变化情况。协方差公式为:
5.3 协方差与协方差矩阵 协方差和协方差矩阵都是用来描述变量之间关系的工具,但协方差矩阵可以同时描述多个变量之间的关系
- 协方差:协方差只描述两个变量之间的关系,正值表示正相关,负值表示负相关
- 协方差矩阵:协方差矩阵是一个对称矩阵,包含多个变量之间的协方差信息,用于多变量统计分析。协方差矩阵公式为:
[ 抱个拳,总个结 ]
- 科研为国分忧,创新与民造福 -
日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删
[ 算法金,碎碎念 ]
入选 CSDN 算法领域
内容榜单 Top 1
真香~
全网同名,日更万日,让更多人享受智能乐趣
如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖
相关文章:

算法金 | 协方差、方差、标准差、协方差矩阵
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...

FastAPI教程II
本文参考FastAPI教程https://fastapi.tiangolo.com/zh/tutorial Cookie参数 定义Cookie参数与定义Query和Path参数一样。 具体步骤如下: 导入Cookie:from fastapi import Cookie声明Cookie参数,声明Cookie参数的方式与声明Query和Path参数…...

Facebook的投流技巧有哪些?
相信大家都知道Facebook拥有着巨大的用户群体和高转化率,在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈,在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧࿰…...
Spring Boot 中的微服务监控与管理
微服务的概述 微服务架构的优点和挑战 优点: 灵活性和可扩展性:微服务架构允许每个服务单独部署和扩展,这使得系统可以更灵活地适应不同的业务需求和负载变化。 使团队更加聚焦:每个微服务都有明确的职责,这使得开发团队可以更加聚焦,专注于开发他们的服务。 技术和框…...
【计算机网络】期末复习(1)模拟卷
一、选择题 1. 电路交换的三个阶段是建立连接、()和释放连接 A. Hello包探测 B. 通信 C. 二次握手 D. 总线连接 2. 一下哪个协议不属于C/S模式() A. SNMP…...
【软件工程中的演化模型及其优缺点】
文章目录 1. 增量模型什么是增量模型?优点缺点 2. 增量-迭代模型什么是增量-迭代模型?优点缺点 3. 螺旋模型什么是螺旋模型?优点缺点 1. 增量模型 什么是增量模型? 增量模型是一种逐步增加功能和特性的开发方法。项目被划分为多…...
Oracle 数据库详解:概念、结构、使用场景与常用命令
1. 引言 Oracle 数据库作为全球领先的关系型数据库管理系统(RDBMS),在企业级应用中占据了重要地位。本文将详细介绍Oracle数据库的核心概念、架构、常用操作及其广泛的使用场景,旨在为读者提供全面而深入的理解。 2. Oracle 数据…...

FreeRTOS的裁剪与移植
文章目录 1 FreeRTOS裁剪与移植1.1 FreeRTOS基础1.1.1 RTOS与GPOS1.1.2 堆与栈1.1.3 FreeRTOS核心文件1.1.4 FreeRTOS语法 1.2 FreeRTOS移植和裁剪 1 FreeRTOS裁剪与移植 1.1 FreeRTOS基础 1.1.1 RTOS与GPOS 实时操作系统(RTOS):是指当…...
能求一个数字的字符数量的程序
目录 开头程序程序的流程图程序输入与打印的效果例1输入输出 例2输入输出 关于这个程序的一些实用内容结尾 开头 大家好,我叫这是我58,今天,我们先来看一下下面的程序。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>…...

PTA-线性表实验(JAVA)
题目1:Josephus环的问题及算法 【实验内容】 编程实现如下功能: 题意说明:古代某法官要判决n个犯人的死刑,他有一条荒唐的法律,将犯人站成一个圆圈,从第start个犯人开始数起,每数到第distance的…...
LeetCode:494. 目标和
题目 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 : 例如,nums [2, 1] ,可以在 2 之前添加 ‘’ ,在 1 之前添…...

HarmonyOS Next开发学习手册——选项卡 (Tabs)
当页面信息较多时,为了让用户能够聚焦于当前显示的内容,需要对页面内容进行分类,提高页面空间利用率。 Tabs 组件可以在一个页面内快速实现视图内容的切换,一方面提升查找信息的效率,另一方面精简用户单次获取到的信息…...
LeetCode2710.移除字符串中的尾随零
cpp class Solution { public:string removeTrailingZeros(string num) {int flag 0;string s num;int size num.length();for (int i num.length() - 1; i > 0; i--) {if (num[i] ! 0)break;if (num[i] 0) {size--;}}s.resize(size);return s;} };...

PPT录屏怎么录?PPT录屏,3种方法简单操作
在数字化时代,PPT已经成为我们日常工作、学习和生活中不可或缺的一部分。无论是商务报告、教学课件还是产品展示,PPT都能帮助我们更加生动、直观地传递信息。然而,有时候我们会面临PPT录屏怎么录的问题。这时,一个好的PPT录屏功能…...

HarmonyOS开发:应用完整性校验
简介 为了确保应用的完整性和来源可靠,OpenHarmony需要对应用进行签名和验签。 应用开发阶段: 开发者完成开发并生成安装包后,需要开发者对安装包进行签名,以证明安装包发布到设备的过程中没有被篡改。OpenHarmony的应用完整性校…...

【MySQL基础篇】SQL指令:DQL及DCL
1、DQL DQL - 介绍 DQL英文全称是Data Query Language(数据查询语言),数据查询语言,用来查询数据表中的记录。(在MySQL中应用是最为广泛的) 查询关键字:SELECT DQL - 语法 SELECT 字段列表 FROM 表名列表 WHER…...

[C++][设计模式][适配器模式]详细讲解
目录 1.动机2.模式定义3.要点总结4.代码感受 1.动机 在软件系统中,由于应用环境的变化,常常需要将”一些现存的对象“放在新的环境中应用,但是新环境要求的接口是这些现存对象所不满足如何应对这些”迁移的变化“?如何既能利用现…...
8080时序驱动TFT显示屏 驱动IC GC9307
8080时序总共有控制线 CS片选线 DC(命令数据控制线) RD读控制线 WR写控制线 和N条数据线。 控制底层代码如下; 写读代码,读的代码反过来就行 inline void TFT8080WriteDat(unsigned char dat) {CS_L;//开始片选DC_H;//写数据 // RD_H;//禁止读WR_H;//禁止写WR_L;//写入…...

K8S 集群节点缩容
环境说明: 主机名IP地址CPU/内存角色K8S版本Docker版本k8s231192.168.99.2312C4Gmaster1.23.1720.10.24k8s232192.168.99.2322C4Gwoker1.23.1720.10.24k8s233(需下线)192.168.99.2332C4Gwoker1.23.1720.10.24 1. K8S 集群节点缩容 当集群中有…...
Web-HTML-事件
1 需求 2 语法 3 示例 4 参考资料 HTML 事件 | 菜鸟教程...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...