当前位置: 首页 > news >正文

[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差

题目:

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

差值是一个正数,其数值等于两值之差的绝对值。

解析:

  1. minDiffInBST 方法是主要方法。
  2. 创建一个 ArrayList 来存储树的节点值。
  3. inorderTraversal 方法进行中序遍历,将节点值添加到列表中。
  4. 在得到有序列表后,遍历列表,计算相邻元素的差值。
  5. 使用 Math.min 来持续更新最小差值。
  6. 最后,返回找到的最小差值。
import java.util.ArrayList;
import java.util.List;public class no_530 {public static void main(String[] args) {TreeNode root = new TreeNode(4);root.left = new TreeNode(2);root.right = new TreeNode(6);root.left.left = new TreeNode(1);root.left.right = new TreeNode(3);System.out.println(getMinimumDifference(root));}public static int getMinimumDifference(TreeNode root) {List<Integer> values = new ArrayList<>();inorderTraversal(root, values);int minDiff = Integer.MAX_VALUE;for (int i = 1; i < values.size(); i++) {minDiff = Math.min(minDiff, values.get(i) - values.get(i - 1));}return minDiff;}public static void inorderTraversal(TreeNode node, List<Integer> values) {if (node == null) return;inorderTraversal(node.left, values);values.add(node.val);inorderTraversal(node.right, values);}
}

 

相关文章:

[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差

题目&#xff1a; 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&#xff0c;其数值等于两值之差的绝对值。 解析&#xff1a; minDiffInBST 方法是主要方法。创建一个 ArrayList 来存储树的节点值。inorderTrave…...

【Docker】可视化平台Portainer

文章目录 Portainer的特点Portainer的安装步骤注意事项 Docker的可视化工具Portainer是一个轻量级的容器管理平台&#xff0c;它为用户提供了一个直观的图形界面来管理Docker环境。以下是关于Portainer的详细介绍和安装步骤&#xff1a; Portainer的特点 轻量级&#xff1a;P…...

MySQL高级-MVCC-原理分析(RR级别)

文章目录 1、RR隔离级别下&#xff0c;仅在事务中第一次执行快照读时生成ReadView&#xff0c;后续复用该ReadView2、总结 1、RR隔离级别下&#xff0c;仅在事务中第一次执行快照读时生成ReadView&#xff0c;后续复用该ReadView 而RR 是可重复读&#xff0c;在一个事务中&…...

压力测试Monkey命令参数和报告分析

目录 常用参数 -p <测试的包名列表> -v 显示日志详细程度 -s 伪随机数生成器的种子值 --throttle < 毫秒> --ignore-crashes 忽略崩溃 --ignore-timeouts 忽略超时 --monitor-native-crashes 监视本地崩溃代码 --ignore-security-exceptions 忽略安全异常 …...

C# Benchmark

创建控制台项目&#xff08;或修改现有项目的Main方法代码&#xff09;&#xff0c;Nget导入Benchmark0.13.12&#xff0c;创建测试类&#xff1a; public class StringBenchMark{int[] numbers;public StringBenchMark() {numbers Enumerable.Range(1, 20000).ToArray();}[Be…...

算法金 | 协方差、方差、标准差、协方差矩阵

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 抱个拳&#xff0c;送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...

FastAPI教程II

本文参考FastAPI教程https://fastapi.tiangolo.com/zh/tutorial Cookie参数 定义Cookie参数与定义Query和Path参数一样。 具体步骤如下&#xff1a; 导入Cookie&#xff1a;from fastapi import Cookie声明Cookie参数&#xff0c;声明Cookie参数的方式与声明Query和Path参数…...

Facebook的投流技巧有哪些?

相信大家都知道Facebook拥有着巨大的用户群体和高转化率&#xff0c;在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈&#xff0c;在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧&#xff0…...

Spring Boot 中的微服务监控与管理

微服务的概述 微服务架构的优点和挑战 优点: 灵活性和可扩展性:微服务架构允许每个服务单独部署和扩展,这使得系统可以更灵活地适应不同的业务需求和负载变化。 使团队更加聚焦:每个微服务都有明确的职责,这使得开发团队可以更加聚焦,专注于开发他们的服务。 技术和框…...

【计算机网络】期末复习(1)模拟卷

一、选择题 1. 电路交换的三个阶段是建立连接、()和释放连接 A. Hello包探测 B. 通信 C. 二次握手 D. 总线连接 2. 一下哪个协议不属于C/S模式() A. SNMP…...

【软件工程中的演化模型及其优缺点】

文章目录 1. 增量模型什么是增量模型&#xff1f;优点缺点 2. 增量-迭代模型什么是增量-迭代模型&#xff1f;优点缺点 3. 螺旋模型什么是螺旋模型&#xff1f;优点缺点 1. 增量模型 什么是增量模型&#xff1f; 增量模型是一种逐步增加功能和特性的开发方法。项目被划分为多…...

Oracle 数据库详解:概念、结构、使用场景与常用命令

1. 引言 Oracle 数据库作为全球领先的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;在企业级应用中占据了重要地位。本文将详细介绍Oracle数据库的核心概念、架构、常用操作及其广泛的使用场景&#xff0c;旨在为读者提供全面而深入的理解。 2. Oracle 数据…...

FreeRTOS的裁剪与移植

文章目录 1 FreeRTOS裁剪与移植1.1 FreeRTOS基础1.1.1 RTOS与GPOS1.1.2 堆与栈1.1.3 FreeRTOS核心文件1.1.4 FreeRTOS语法 1.2 FreeRTOS移植和裁剪 1 FreeRTOS裁剪与移植 1.1 FreeRTOS基础 1.1.1 RTOS与GPOS ​ 实时操作系统&#xff08;RTOS&#xff09;&#xff1a;是指当…...

能求一个数字的字符数量的程序

目录 开头程序程序的流程图程序输入与打印的效果例1输入输出 例2输入输出 关于这个程序的一些实用内容结尾 开头 大家好&#xff0c;我叫这是我58&#xff0c;今天&#xff0c;我们先来看一下下面的程序。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>…...

PTA-线性表实验(JAVA)

题目1&#xff1a;Josephus环的问题及算法 【实验内容】 编程实现如下功能&#xff1a; 题意说明&#xff1a;古代某法官要判决n个犯人的死刑&#xff0c;他有一条荒唐的法律&#xff0c;将犯人站成一个圆圈&#xff0c;从第start个犯人开始数起&#xff0c;每数到第distance的…...

LeetCode:494. 目标和

题目 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘’ 或 ‘-’ &#xff0c;然后串联起所有整数&#xff0c;可以构造一个 表达式 &#xff1a; 例如&#xff0c;nums [2, 1] &#xff0c;可以在 2 之前添加 ‘’ &#xff0c;在 1 之前添…...

HarmonyOS Next开发学习手册——选项卡 (Tabs)

当页面信息较多时&#xff0c;为了让用户能够聚焦于当前显示的内容&#xff0c;需要对页面内容进行分类&#xff0c;提高页面空间利用率。 Tabs 组件可以在一个页面内快速实现视图内容的切换&#xff0c;一方面提升查找信息的效率&#xff0c;另一方面精简用户单次获取到的信息…...

LeetCode2710.移除字符串中的尾随零

cpp class Solution { public:string removeTrailingZeros(string num) {int flag 0;string s num;int size num.length();for (int i num.length() - 1; i > 0; i--) {if (num[i] ! 0)break;if (num[i] 0) {size--;}}s.resize(size);return s;} };...

PPT录屏怎么录?PPT录屏,3种方法简单操作

在数字化时代&#xff0c;PPT已经成为我们日常工作、学习和生活中不可或缺的一部分。无论是商务报告、教学课件还是产品展示&#xff0c;PPT都能帮助我们更加生动、直观地传递信息。然而&#xff0c;有时候我们会面临PPT录屏怎么录的问题。这时&#xff0c;一个好的PPT录屏功能…...

HarmonyOS开发:应用完整性校验

简介 为了确保应用的完整性和来源可靠&#xff0c;OpenHarmony需要对应用进行签名和验签。 应用开发阶段&#xff1a; 开发者完成开发并生成安装包后&#xff0c;需要开发者对安装包进行签名&#xff0c;以证明安装包发布到设备的过程中没有被篡改。OpenHarmony的应用完整性校…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...