当前位置: 首页 > news >正文

力扣每日一题 6/30 记忆化搜索/动态规划

  • 博客主页:誓则盟约
  • 系列专栏:IT竞赛 专栏
  • 关注博主,后期持续更新系列文章
  • 如果有错误感谢请大家批评指出,及时修改
  • 感谢大家点赞👍收藏⭐评论✍ 

494.目标和【中等

题目:

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

分析问题:

设 nums 的元素和为 s,添加正号的元素之和为 p,添加负号的元素(绝对值)之和为 q,那么有

  • p+q=s
  • p-q=target

化简得:

  • p = (s+target) / 2 
  • q = (s-target) / 2

        我们找所有元素里面选取出来的元素和恰好为p的方案个数,那么这就变成了一道经典的0-1背包问题的变形,找恰好装capacity,求方案数/最大/最小价值和,capacity指的是容量,也就是这里的负数的和的绝对值。

        那么我们就可以根据传统的0-1背包问题的求解过程来解题,带上cache数组以便达到记忆化的一个效果。

        此处也可以进行进一步的优化,用一个二维数组f来替代递推函数dfs

        首先创建一个二维数组f,其中n表示数组的长度,target表示目标值,该数组用于记录不同状态下的结果。

        然后将f[0][0]初始化为1,这是一个基础的起始条件。接下来通过两个嵌套循环进行计算。外层循环遍历一个名为nums的数组,其中的每个元素x代表物品的价值。内层循环遍历目标值target的所有可能取值。在循环内部,根据不同条件更新f数组的值。

  •         如果c小于x,说明当前考虑的物品价值x大于当前的目标值c,无法选择该物品,所以f[i + 1][c]保持与f[i][c]相同。
  •         如果c大于或等于x,那么f[i + 1][c]等于f[i][c]加上f[i][c - x],这表示在这种情况下,可以选择该物品,所以要将不选择该物品的情况(f[i][c])和选择该物品的情况(f[i][c - x])的结果相加。

        最后,函数返回f[n][target],即最终在考虑了所有物品和目标值的情况下的结果。

代码实现:

优化前:
class Solution:def findTargetSumWays(self, nums: list[int], target: int) -> int:# p = (s+t) /2target += sum(nums)if target < 0 or target % 2:return 0target //=2n=len(nums)@cache  # 保存记忆def dfs(i,c): # i是剩余多少个物品没装      c是当前背包剩余容量if i<0:return 1 if c==0 else 0if c < nums[i]:return dfs(i-1,c)return dfs(i-1,c)+dfs(i-1,c-nums[i])return dfs(n-1,target)

 

优化后:
class Solution:def findTargetSumWays(self, nums: list[int], target: int) -> int:# p = (s+t) /2target += sum(nums)if target < 0 or target % 2:return 0target //=2n=len(nums)f=[[0]*(target+1) for _ in range(n+1)]f[0][0]=1for i,x in enumerate(nums):for c in range(target+1):if c<x: f[i+1][c] = f[i][c]else: f[i+1][c] = f[i][c] + f[i][c-x]return f[n][target]


 

总结:

优化后代码详细解释
  1. target += sum(nums):将target值加上数组nums的元素总和,得到p的2倍。
  2. if target < 0 or target % 2::检查新的target值是否小于0或是否为奇数。如果是,则直接返回0,表示无法得到目标值。
  3. target //= 2:将target值除以2,得到用于后续计算的新值。
  4. n = len(nums):获取数组nums的长度。
  5. f = [[0] * (target + 1) for _ in range(n + 1)]:创建一个二维数组f,用于动态规划的计算。
  6. f[0][0] = 1:设置初始状态,即当没有元素且目标值为0时,有一种方法可以达到。
  7. 通过两个嵌套循环进行动态规划计算:
    • 外层循环for i, x in enumerate(nums):遍历数组nums的每个元素。
    • 内层循环for c in range(target + 1):遍历所有可能的目标值。
    • 在循环内部,根据当前元素x和目标值c的关系更新f[i + 1][c]的值。如果c < x,则f[i + 1][c] = f[i][c],表示无法选择当前元素来达到目标值;如果c >= x,则f[i + 1][c] = f[i][c] + f[i][c - x],表示可以选择或不选择当前元素来达到目标值,将两种情况的方法数相加。
  8. 最后,函数返回f[n][target],即使用整个数组nums达到最终目标值的方法数。

考点

  1. 动态规划的应用:通过构建二维数组来记录不同状态下的结果,根据状态转移方程进行计算。
  2. 对问题的数学转化:将原问题转化为通过加减运算得到特定值的问题,并进行了一些预处理和条件判断。

收获

  1. 深入理解了动态规划的思想和应用方法,学会如何根据问题的特点构建合适的状态和状态转移方程。
  2. 提高了对问题进行数学分析和转化的能力,能够将复杂的问题简化为可计算的形式。
  3. 增强了对数组操作和循环的熟练程度,能够灵活运用这些基本编程技巧来解决实际问题。

 “对于我们的幸福来说,别人的看法在本质上来讲并不十分重要。”——《人生的智慧》

相关文章:

力扣每日一题 6/30 记忆化搜索/动态规划

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 494.目标和【中等】 题目&#xff1a; 给你一个非负整数数组 nums 和一个…...

图像基础知识入门【图像概念不同图像格式】

图像基础知识入门【图像概念&不同图像格式】 最近有在处理图像转换&#xff0c;因此稍微补足了一下图像相关知识&#xff0c;特在此记录。下面汇总是我根据自己理解和网上查阅资料而来。如有错误&#xff0c;欢迎大家指正。 1 基础概念 像素/分辨率 像素(Pixel)&#xff…...

HP服务器基于SNMP-ilo4的硬件监控指标解读

监控易是一款功能全面的IT基础设施监控软件&#xff0c;它通过SNMP协议与HP服务器内置的ilo4远程管理卡进行通信&#xff0c;实现对HP服务器硬件状态的实时监控。本文将针对监控易中基于SNMP-ilo4的HP服务器硬件监控指标进行解读&#xff0c;帮助运维团队更好地理解和应用这些监…...

Android13系统导航栏添加音量加减键按钮功能

不知道为什么拿到芯片原厂发布给我们的Android13系统源码编译后&#xff0c;导航栏没有音量加减键&#xff0c;客户有反馈这个问题&#xff0c;所以特意加了一下&#xff0c;修改记录如下&#xff1a;frameworks/base目录下 commit 9cb2244d61a237cab03c540bfcca6e4fac2bea2c …...

普及GIS知识,推动产业发展

915 GIS节&#xff1a;普及GIS知识&#xff0c;推动产业发展 自2008年起&#xff0c;每年的9月15日被定为“GIS节”&#xff0c;这一特殊的节日由超图首次发起倡议&#xff0c;旨在打造一个普及和传播GIS&#xff08;地理信息系统&#xff09;知识的平台&#xff0c;促进大众对…...

第2章-Python编程基础

#本章目标 1&#xff0c;了解什么是计算机程序 2&#xff0c;了解什么是编程语言 3&#xff0c;了解编程语言的分类 4&#xff0c;了解静态语言与脚本语言的区别 5&#xff0c;掌握IPO程序编写方法 6&#xff0c;熟练应用输出函数print与输入函数input 7&#xff0c;掌握Python…...

LDO产品的基础知识解析

低压降稳压器 (LDO)是一种用于调节较高电压输入产生的输出电压的简单方法。在大多数情况下&#xff0c;低压降稳压器都易于设计和使用。然而&#xff0c;如今的现代应用都包括各种各样的模拟和数字系统&#xff0c;而有些系统和工作条件将决定哪种LDO最适合相关电路&#xff0c…...

如何利用python画出AHP-SWOT的战略四边形(四象限图)

在企业或产业发展的相关论文分析中&#xff0c;常用到AHP-SWOT法进行定量分析&#xff0c;形成判断矩阵后&#xff0c;如何构造整洁的战略四边形是分析的最后一个环节&#xff0c;本文现将相关代码发布如下&#xff1a; import mpl_toolkits.axisartist as axisartist import …...

适用于智慧城市、智慧文旅等在线场景的轻量级3D数字人引擎MyAvatar简介

本人研发的国内首个纯面向web应用和小程序的轻量级3D虚拟人引擎MyAvatar。 功能简述 支持3D模型定制&#xff08;写实或卡通风格均可&#xff0c;人物模型需实现绑定和变形&#xff09;动画可以内置于模型中&#xff0c;也可以单独以glb或fbx格式导出并动态加载支持readyplay…...

Excel显示/隐藏批注按钮为什么是灰色?

在excel中&#xff0c;经常使用批注来加强数据信息的提示&#xff0c;有时候会把很多的批注显示出来&#xff0c;但是再想将它们隐藏起来&#xff0c;全选工作表后&#xff0c;“显示/隐藏批注”按钮是灰色的&#xff0c;不可用。 二、可操作方法 批注在excel、WPS表格中都是按…...

ArtTS系统能力-通知的学习(3.1)

上篇回顾&#xff1a; ArtTS语言基础类库-容器类库内容的学习(2.10.2&#xff09; 本篇内容&#xff1a; ArtTS系统能力-通知的学习&#xff08;3.1&#xff09; 一、 知识储备 1. 基础类型通知 按内容分成四类&#xff1a; 类型描述NOTIFICATION_CONTENT_BASIC_TEXT普通文…...

Apollo9.0 PNC源码学习之Planning模块(三)—— public_road_planner

前面文章: (1)Apollo9.0 PNC源码学习之Planning模块(一)—— 规划概览 (2)Apollo9.0 PNC源码学习之Planning模块(二)—— planning_component 1 planning_interface_base 规划接口基类: planning\planning_interface_base\planner_base\planner.h #pragma once#in…...

【Elasticsearch】linux使用supervisor常驻Elasticsearch,centos6.10安装 supervisor

背景&#xff1a; linux服务器&#xff0c;CentOS 6操作系统&#xff0c;默认版本python2.6.6&#xff0c;避免安装过多的依赖不升级python 在网上查的资料python2.6.6兼容supervisor版本 3.1.3 安装supervisor 手动在python官网下载supervisor&#xff0c;并上传到服务器 下…...

推荐系统三十六式学习笔记:原理篇.模型融合14|一网打尽协同过滤、矩阵分解和线性模型

目录 从特征组合说起FM模型1.原理2.模型训练3.预测阶段4.一网打尽其他模型5.FFM 总结 在上一篇文章中&#xff0c;我们讲到了使用逻辑回归和梯度提升决策树组合的模型融合办法&#xff0c;用于CTR预估&#xff0c;给这个组合起了个名字&#xff0c;叫“辑度组合”。这对组合中&…...

如何使用mapXplore将SQLMap数据转储到关系型数据库中

关于mapXplore mapXplore是一款功能强大的SQLMap数据转储与管理工具&#xff0c;该工具基于模块化的理念开发&#xff0c;可以帮助广大研究人员将SQLMap数据提取出来&#xff0c;并转储到类似PostgreSQL或SQLite等关系型数据库中。 功能介绍 当前版本的mapXplore支持下列功能…...

JAVA设计模式-大集合数据拆分

背景 我们在做软件开发时&#xff0c;经常会遇到把大集合的数据&#xff0c;拆分成子集合处理。例如批量数据插入数据库时&#xff0c;一次大约插入5000条数据比较合理&#xff0c;但是有时候待插入的数据远远大于5000条。这时候就需要进行数据拆分。数据拆分基本逻辑并不复杂&…...

如何使用sr2t将你的安全扫描报告转换为表格格式

关于sr2t sr2t是一款针对安全扫描报告的格式转换工具&#xff0c;全称为“Scanning reports to tabular”&#xff0c;该工具可以获取扫描工具的输出文件&#xff0c;并将文件数据转换为表格格式&#xff0c;例如CSV、XLSX或文本表格等&#xff0c;能够为广大研究人员提供一个…...

ansible自动化运维,(2)ansible-playbook

三种常见的数据格式&#xff1a; XML&#xff1a;可扩展标记语言&#xff0c;用于数据交换和配置 JSON&#xff1a;对象标记法&#xff0c;主要用来数据交换或配置&#xff0c;不支持注释 YAML&#xff1a;不是一种标记语言&#xff0c;主要用来配置&#xff0c;大小写敏感&…...

一分钟学习数据安全—自主管理身份SSI分布式标识DID介绍

SSI标准化的两大支柱&#xff0c;一个是VC&#xff0c;之前简单介绍过&#xff0c;另一个就是DID。基本层次上&#xff0c;DID就是一种新型的全局唯一标识符&#xff0c;跟浏览器的URL没有什么不同。深层次上&#xff0c;DID是互联网分布式数字身份和PKI新层级的原子构件。 一…...

[单master节点k8s部署]11.服务service

service service是一个固定接入层&#xff0c;客户端 可以访问service的ip和端口&#xff0c;访问到service关联的后端pod&#xff0c;这个service工作依赖于dns服务&#xff08;coredns&#xff09; 每一个k8s节点上都有一个组件叫做kube-proxy&#xff0c;始终监视着apiser…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...