当前位置: 首页 > news >正文

AI与Python共舞:如何利用深度学习优化推荐系统?

AI与Python共舞:如何利用深度学习优化推荐系统?

当你在浏览新闻、电影或是购物平台时,那些仿佛读懂你心思的个性化推荐背后,正是AI技术与Python语言的精妙协作。今天,我们将通过一个实际案例,探索如何利用深度学习技术和Python实现一个简化的电影推荐系统,并巧妙地融入开源项目 PlugLink,让数据流通与系统扩展变得更加便捷。

引言

推荐系统的初衷简单而直接:在浩瀚的数据海洋中,为每位用户提供与其兴趣高度匹配的内容。从最初的协同过滤到现在的深度学习模型,推荐算法不断进化,旨在提升用户体验和商业价值。Python,凭借其强大的库支持和易读性,成为了实现这些复杂算法的理想选择。

案例背景

假设我们正在为一家在线视频平台设计推荐系统,目标是根据用户的历史观影记录,预测并推荐他们可能感兴趣的电影。我们的数据集包含用户ID、观看过的电影ID及评分等信息。在此基础上,我们将使用Python构建一个基于神经网络的协同过滤模型。

技术栈概览

  • Python库:Pandas(数据处理)、TensorFlow(深度学习框架)、NumPy(科学计算)、Scikit-learn(机器学习工具包)。
  • 数据准备:清洗、转换数据格式,构建用户-电影评分矩阵。
  • 模型构建:采用TensorFlow实现多层感知器(MLP)模型,对用户和电影特征进行嵌入,然后通过交互层预测评分。
  • 评估与优化:利用交叉验证和损失函数最小化策略进行模型调优。

核心代码片段

下面是一个简化的代码示例,展示了如何使用TensorFlow创建电影推荐系统的基本架构。请注意,这仅是整个项目的一部分,实际应用中还需包括数据预处理和模型评估环节。

import tensorflow as tf
from tensorflow.keras.layers import Embedding, Flatten, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2# 假设 num_users 和 num_movies 是用户和电影的数量
embedding_dim = 10  # 嵌入维度# 用户和电影的嵌入层
user_input = tf.keras.Input(shape=(1,), name='user_input')
movie_input = tf.keras.Input(shape=(1,), name='movie_input')user_embedding = Embedding(num_users, embedding_dim, embeddings_regularizer=l2(1e-5))(user_input)
movie_embedding = Embedding(num_movies, embedding_dim, embeddings_regularizer=l2(1e-5))(movie_input)# 将嵌入后的向量展平以便通过全连接层
user_flattened = Flatten()(user_embedding)
movie_flattened = Flatten()(movie_embedding)# 通过交互层预测评分
concatenation = tf.keras.layers.concatenate([user_flattened, movie_flattened])
dense_1 = Dense(128, activation='relu')(concatenation)
output = Dense(1)(dense_1)# 构建模型
model = Model(inputs=[user_input, movie_input], outputs=output)# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 训练模型...(此处省略数据加载和训练步骤)

PlugLink:让数据流动更高效

在推荐系统的开发和维护过程中,数据的管理和交换往往是关键挑战之一。PlugLink 是一个旨在简化数据接口管理和应用间通信的开源项目。它通过提供一套灵活的数据交换标准和工具,使得推荐系统的各个组件(如数据处理、模型训练、实时推荐服务)之间的数据流无缝衔接,显著提高开发效率和系统稳定性。

例如,我们可以利用 PlugLink 设计一个数据接口,自动同步用户的行为日志到模型训练模块,保证推荐模型能够及时反映最新的用户偏好。同时,它也能帮助我们快速集成第三方数据源,丰富推荐内容的多样性。

总结

通过上述案例,我们不仅领略了深度学习在推荐系统中的应用魅力,也体验了Python作为开发语言的灵活性与强大功能。而引入PlugLink,则为我们搭建高效、可扩展的数据交换机制提供了坚实基础。在AI技术日益普及的今天,这样的组合无疑是推动技术创新和产品迭代的强大力量。未来,随着更多前沿技术的涌现,Python与AI的故事,定会更加精彩纷呈。

相关文章:

AI与Python共舞:如何利用深度学习优化推荐系统?

AI与Python共舞:如何利用深度学习优化推荐系统? 当你在浏览新闻、电影或是购物平台时,那些仿佛读懂你心思的个性化推荐背后,正是AI技术与Python语言的精妙协作。今天,我们将通过一个实际案例,探索如何利用…...

URLSearchParams: 浏览器中的查询字符串处理利器

一、 概述 在Web开发中,处理URL的查询字符串是一个常见任务。URLSearchParams API 提供了一种简单而强大的方法来处理Web URL的查询参数。它是一个内置的浏览器API,允许你以名称/值对的形式轻松地创建、读取、更新和删除查询参数。 二、URLSearchParam…...

2024最新初级会计职称题库来啦!!!

16.根据增值税法律制度的规定,下列各项中,属于"提供加工、修理修配劳务"的是()。 A.修理小汽车 B.修缮办公楼 C.爆破 D.矿山穿孔 答案:A 解析:选项AB:修理有形动产(…...

Stirling PDF 部署 - 强大的PDF Web在线编辑工具箱

简介 这是一个强大的、可本地托管的、基于 Web 的 PDF 操作工具,可使用 Docker部署。它使您能够对 PDF 文件执行各种操作,包括拆分、合并、转换、重组、添加图像、旋转、压缩等。这个本地托管的 Web 应用程序已经发展到包含一套全面的功能,可…...

大数据面试题之MapReduce(3)

目录 reduce任务什么时候开始? MapReduce的reduce使用的是什么排序? MapReduce怎么确定MapTask的数量? Map数量由什么决定 MapReduce的map进程和reducer进程的ivm垃圾回收器怎么选择可以提高吞吐量? MapReduce的task数目划分 MapReduce作业执行的过程中,中…...

[leetcode]squares-of-a-sorted-array. 有序数组的平方

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> sortedSquares(vector<int>& nums) {int n nums.size();vector<int> ans(n);for (int i 0, j n - 1, pos n - 1; i < j;) {if (nums[i] * nums[i] > nums[j] *…...

使用Spring Boot和Spring Data JPA进行数据库操作

使用Spring Boot和Spring Data JPA进行数据库操作 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在现代的Web应用开发中&#xff0c;数据库操作是不可或缺的一…...

《昇思25天学习打卡营第17天 | 昇思MindSporeCycleGAN图像风格迁移互换》

17天 本节学习了CycleGAN图像风格迁移互换。 CycleGAN即循环对抗生成网络&#xff0c;该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移&#xff0c;可以通俗地理解为图像风格迁移。其实在 CycleGAN 之前&a…...

SecureCRT使用SSH登录服务器报错:Key exchange failed

SecureCRT使用SSH登录Ubuntu服务器报错&#xff1a;Key exchange failed 原因&#xff1a; ssh客户端与服务器的公钥协商失败&#xff0c;SecureCRT客户端所指定的秘钥交换算法&#xff08;KexAlgorithms &#xff09;&#xff0c;不在服务端支持范围内。可能是服务端的sshd版…...

Oracle给用户单个表查询权限

Oracle给用户单个表查询权限 1. 创建用户 --创建用户thfj_test,密码为thfj_test create user thfj_test identified by thfj_test;2. 用户授权 --授权连接数据库权限给thfj_test grant create session to thfj_test; --授权查询表USER_INFO 的权限给thfj_test grant sele…...

[Go 微服务] Kratos 验证码业务

文章目录 1.环境准备2.验证码服务2.1 kratos 初始化验证码服务项目2.2 使用 Protobuf 定义验证码生成接口2.3 业务逻辑代码实现 1.环境准备 protoc和protoc-gen-go插件安装和kratos工具安装 protoc下载 下载二进制文件&#xff1a;https://github.com/protocolbuffers/protobu…...

等保2.0安全计算环境解读

等保2.0&#xff0c;即网络安全等级保护2.0制度&#xff0c;是中国为了适应信息技术的快速发展和安全威胁的新变化而推出的网络安全保护标准。相较于等保1.0&#xff0c;等保2.0更加强调主动防御、动态防御和全面审计&#xff0c;旨在实现对各类信息系统的全面保护。 安全计算环…...

Qt视频播放器(二)

文章目录 1. 安装FFmpeg库2. 创建Qt项目3. 配置项目文件CMakeLists.txt4. 实现核心FFmpeg功能`videoplayer.h``videoplayer.cpp`5. 实现QML界面`main.qml`6. 主函数`main.cpp`运行项目详细说明结合FFmpeg进行视频播放的核心部分,并使用QML进行界面设计,您可以实现一个功能强大…...

普元EOS学习笔记-创建精简应用

前言 本文依旧基于EOS8.3进行描述。 在上一篇文章《EOS8.3精简版安装》中&#xff0c;我们了解到普元预编译好的EOS的精简版压缩包&#xff0c;安装后&#xff0c;只能进行低开&#xff0c;而无法高开。 EOS精简版的高开方式是使用EOS开发工具提供的IDE&#xff0c;创建一个…...

观察者模式在金融业务中的应用及其框架实现

引言 观察者模式&#xff08;Observer Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;使得多个观察者对象同时监听某一个主题对象。当这个主题对象发生变化时&#xff0c;会通知所有观察者对象&#xff0c;使它们能够自动更新。…...

最新docker仓库镜像

目前下面的docker仓库镜像源还能使用。 vi /etc/docker/daemon.json添加如下配置{"registry-mirrors": ["https://hub.uuuadc.top", "https://docker.anyhub.us.kg", "https://dockerhub.jobcher.com", "https://dockerhub.icu&…...

springboot 3.x相比之前版本有什么区别

Spring Boot 3.x相比之前的版本&#xff08;尤其是Spring Boot 2.x&#xff09;&#xff0c;主要存在以下几个显著的区别和新特性&#xff1a; Java版本要求&#xff1a; Spring Boot 3.x要求至少使用Java 17作为最低版本&#xff0c;同时已经通过了Java 19的测试&#xff0c;…...

Python逻辑控制语句 之 判断语句--if语句的基本结构

1.程序执行的三大流程 顺序 分支&#xff08;判断&#xff09; 循环 2.if 语句的介绍 单独的 if 语句,就是 “如果 条件成⽴,做什么事” 3.if 语句的语法 if 判断条件: 判断条件成立&#xff0c;执行的代码…...

LeetCode 算法:翻转二叉树 c++

原题链接&#x1f517;&#xff1a;翻转二叉树 难度&#xff1a;简单⭐️ 题目 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1] 示例 …...

七天速通javaSE:第五天 数组进阶

文章目录 前言一、二维数组二、Arrays类1.toString打印数组内各元素1.1 示例1.2 自己实现内部逻辑 2. sort升序排列3. fill数组填充&#xff08;重新赋值&#xff09;4.equals比较数组元素是否相等 三、冒泡排序 前言 本文将学习二维数组、arrays类以及冒泡排序 一、二维数组 …...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

【Java】Ajax 技术详解

文章目录 1. Filter 过滤器1.1 Filter 概述1.2 Filter 快速入门开发步骤:1.3 Filter 执行流程1.4 Filter 拦截路径配置1.5 过滤器链2. Listener 监听器2.1 Listener 概述2.2 ServletContextListener3. Ajax 技术3.1 Ajax 概述3.2 Ajax 快速入门服务端实现:客户端实现:4. Axi…...

云原生时代的系统设计:架构转型的战略支点

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、云原生的崛起&#xff1a;技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深&#xff0c;传统的 I…...