当前位置: 首页 > news >正文

成绩发布背后:老师的无奈与痛点

在教育的广阔天地里,教师这一角色承载着无数的期望与责任。他们不仅是知识的传播者,更是学生心灵的引路人。而对于班主任老师来说,他们的角色更加多元,他们不仅是老师,还必须是“妈妈”。除了像其他老师一样备课、上课、批改作业、听课、评课之外,班主任还要负责班级的日常管理、学生心理疏导、家校沟通等多重任务。这么多的担子压在肩上,班主任老师没有点辅助工具,哪里能轻松得起来?又哪里能及时地把学生的成绩一个个地通知完呢?

事实上,每当到了发布成绩的时候,班主任老师们总是感到格外头疼。他们需要仔细核对每个学生的成绩,确保准确无误,然后还要考虑如何以一种既保护学生隐私又尊重家长的方式,将成绩及时传达给每一位家长。这个过程往往耗时耗力,让老师们感到身心俱疲。

以某中学的班主任李老师为例,她所负责的班级有五十多名学生,每次发布成绩都是一场“战役”。她需要先从学校的教务系统中导出成绩,然后逐一核对,确保没有错误。接下来,她需要编辑一条短信或邮件,将每个学生的成绩发送给对应的家长。但是,由于家长们的工作和生活节奏各不相同,很多时候,李老师需要反复发送多条信息,才能确保所有家长都收到了孩子的成绩。

“这个过程真的太繁琐了。”李老师感叹道,“有时候,我会因为担心漏发或错发而彻夜难眠。而且,即使我发送了成绩,很多家长还是会打电话或发短信来询问,这进一步增加了我的工作量。”

面对这样的困境,李老师开始寻找能够简化成绩发布流程的辅助工具。经过一番搜索和尝试,她终于找到了一个名为“群发成绩”的小程序。这个小程序让李老师眼前一亮,它完美地解决了成绩发布慢的这个难题。

通过“群发成绩”小程序,李老师只需简单操作几步,就可以将全班学生的成绩上传并发布。家长们只需通过微信等社交平台,即可1对1查询自己孩子的成绩,既保护了学生的隐私,又大大节省了李老师的工作时间。

“自从使用了这个小程序,我再也不用担心成绩发布的问题了。”李老师欣喜地说,“现在,我可以把更多的时间和精力投入到教学和学生管理上,而不是被繁琐的成绩发布工作所困扰。”

“群发成绩”小程序的出现,无疑为班主任老师们带来了福音。它不仅简化了成绩发布的流程,还提高了工作效率,让老师们能够更加专注于教学和学生成长。同时,它也体现了教育信息化的进步和人性化关怀的融合,为家校沟通搭建了一座更加便捷、高效的桥梁。

当然,我们也应该意识到,虽然辅助工具能够为老师们带来便利,但教育的核心始终是人与人之间的交流和关怀。因此,在使用这些工具的同时,我们也应该保持对教育的初心和热情,用心去关注每一个学生的成长和发展。

此外,对于“群发成绩”这类小程序的开发和推广,我们也应该给予更多的支持和鼓励。这不仅能够帮助老师们减轻工作负担,提高教学效率,还能够促进家校之间的更加紧密和有效的合作,共同为学生的全面发展创造更好的环境。

总之,成绩发布背后隐藏着老师的无奈与痛点。而“群发成绩”小程序的出现,无疑为老师们提供了一个有力的辅助工具,让他们能够更加轻松、高效地完成这一任务。同时,我们也应该持续关注教育的信息化进程,不断探索和创新更多有益于教师和学生发展的工具和方法。只有这样,我们才能真正实现教育的现代化和人性化,为每一个学生的成长奠定坚实的基础。

相关文章:

成绩发布背后:老师的无奈与痛点

在教育的广阔天地里,教师这一角色承载着无数的期望与责任。他们不仅是知识的传播者,更是学生心灵的引路人。而对于班主任老师来说,他们的角色更加多元,他们不仅是老师,还必须是“妈妈”。除了像其他老师一样备课、上课…...

MySQL 索引之外的相关查询优化总结

在这之前先说明几个概念: 1、驱动表和被驱动表:驱动表是主表,被驱动表是从表、非驱动表。驱动表和被驱动表并非根据 from 后面表名的先后顺序而确定,而是根据 explain 语句查询得到的顺序确定;展示在前面的是驱动表&am…...

EE trade:贵金属投资的优点及缺点

贵金属(如黄金、白银、铂金和钯金)一直以来都是重要的投资和避险工具。它们具有独特的物理和化学特性,广泛应用于各种行业,同时也被视为财富储备。在进行贵金属投资时,了解其优点和缺点对于做出明智的投资决策至关重要。 一、贵金属投资的优…...

python工作目录与文件目录

工作目录 文件目录:文件所在的目录 工作目录:执行python命令所在的目录 D:. | main.py | ---data | data.txt | ---model | | model.py | | train.py | | __init__.py | | | ---nlp | | | bert.py | …...

可信和可解释的大语言模型推理-RoG

大型语言模型(LLM)在复杂任务中表现出令人印象深刻的推理能力。然而,LLM在推理过程中缺乏最新的知识和经验,这可能导致不正确的推理过程,降低他们的表现和可信度。知识图谱(Knowledge graphs, KGs)以结构化的形式存储了…...

秋招季的策略与行动指南:提前布局,高效备战,精准出击

6月即将进入尾声,一年一度的秋季招聘季正在热火进行中。对于即将毕业的学生和寻求职业发展的职场人士来说,秋招是一个不容错过的黄金时期。 秋招的序幕通常在6月至9月间拉开,名企们纷纷开启网申的大门。在此期间,求职备战是一个系…...

Java并发编程-wait与notify详解及案例实战

文章目录 概述wait()notify()作用注意事项用wait与notify手写一个内存队列wait与notify的底层原理:monitor以及wait_setMonitor(监视器)Wait Set(等待集合)Wait() 原理Notify() / NotifyAll() 原理注意事项wait与notify在代码中使用时的注意事项总结案例实战:基于wait与not…...

204.贪心算法:分发饼干(力扣)

以下来源于代码随想录 class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {// 对孩子的胃口进行排序sort(g.begin(), g.end());// 对饼干的尺寸进行排序sort(s.begin(), s.end());int index s.size() - 1; // 从最大的饼…...

AI奥林匹克竞赛:Claude-3.5-Sonnet对决GPT-4o,谁是最聪明的AI?

目录 实验设置 评估对象 评估方法 结果与分析 针对学科的细粒度分析 GPT-4o vs. Claude-3.5-Sonnet GPT-4V vs. Gemini-1.5-Pro 结论 AI技术日新月异&#xff0c;Anthropic公司最新发布的Claude-3.5-Sonnet因在知识型推理、数学推理、编程任务及视觉推理等任务上设立新…...

【C++】const修饰成员函数

const修饰成员函数 常函数&#xff1a; 成员函数后加const后我们称为这个函数为常函数 常函数内不可以修改成员属性 成员属性声明时加关键字mutable后&#xff0c;在常函数中依然可以修改 class Animal { public:void fun1(){//这是一个普通的成员函数 }void fun2…...

基于模糊神经网络的时间序列预测(以hopkinsirandeath数据集为例,MATLAB)

模糊神经网络从提出发展到今天,主要有三种形式&#xff1a;算术神经网络、逻辑模糊神经网络和混合模糊神经网络。算术神经网络是最基本的&#xff0c;它主要是对输入量进行模糊化&#xff0c;且网络结构中的权重也是模糊权重&#xff1b;逻辑模糊神经网络的主要特点是模糊权值可…...

Java web应用性能分析之【prometheus监控K8s指标说明】

常规k8s的监控指标 单独 1、集群维度 集群状态集群节点数节点状态&#xff08;正常、不可达、未知&#xff09;节点的资源使用率&#xff08;CPU、内存、IO等&#xff09; 2、应用维度 应用响应时间 应用的错误率 应用的请求量 3、系统和集群组件维度 API服务器状态控…...

Spring Boot中的应用配置文件管理

Spring Boot中的应用配置文件管理 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将深入探讨Spring Boot中的应用配置文件管理。在现代的软件开发中&am…...

SCCB协议介绍,以及与IIC协议对比

在之前的文章里已经介绍了IIC协议&#xff1a;iic通信协议 这篇内容主要介绍一下SCCB协议。 文章目录 SCCB协议&#xff1a;SCCB时序图iic时序图SCCB时序 VS IIC时序 总&#xff1a;SCCB协议常用在摄像头配置上面&#xff0c;例如OV5640摄像头&#xff0c;和IIC协议很相似&…...

K8S基础简介

用于自动部署&#xff0c;扩展和管理容器化应用程序的开源系统。 功能&#xff1a; 服务发现和负载均衡&#xff1b; 存储编排&#xff1b; 自动部署和回滚&#xff1b; 自动二进制打包&#xff1b; 自我修复&#xff1b; 密钥与配置管理&#xff1b; 1. K8S组件 主从方式架…...

Studying-代码随想录训练营day24| 93.复原IP地址、78.子集、90.子集II

第24天&#xff0c;回溯算法part03&#xff0c;牢记回溯三部曲&#xff0c;掌握树形结构结题方法&#x1f4aa; 目录 93.复原IP地址 78.子集 90.子集II 总结 93.复原IP地址 文档讲解&#xff1a;代码随想录复原IP地址 视频讲解&#xff1a;手撕复原IP地址 题目&#xff1…...

2024《汽车出海全产业数据安全合规发展白皮书》下载

随着中国制造向中国智造目标的迈进&#xff0c;中国汽车正以前所未有的速度和质量&#xff0c;在全球市场上开疆拓土。不过&#xff0c;在中国汽车加快出海步伐的过程中&#xff0c;数据安全合规风险管理成为车企不容忽视的课题。 6月25日&#xff0c;在中国&#xff08;上海&…...

nvm安装以及idea下vue启动项目过程和注意事项

注意1&#xff1a;nvm版本不要太低&#xff0c;1.1.7会出现下面这个问题&#xff0c;建议1.1.10及其以上版本 然后安装这个教程安装nvm和node.js 链接: nvm安装教程&#xff08;一篇文章所有问题全搞定&#xff0c;非常详细&#xff09; 注意2&#xff1a;上面的教程有一步骤…...

Java SPI服务发现与扩展的利器

Java中&#xff0c;为了实现模块之间的解耦和可扩展性&#xff0c;我们常常需要一种机制来动态加载和替换实现。Java SPI就是这样一种机制&#xff0c;它允许我们在不修改原有代码的情况下&#xff0c;为接口添加新的实现&#xff0c;并在运行时动态加载它们。 SPI&#xff0c…...

Ansible的Playbook

Playbook 特点 playbook 剧本是由一个或多个"play"组成的列表play的主要功能在于将预定义的一组主机&#xff0c;装扮成事先通过ansible中的task定义好的任务角色。Task实际是调用ansible的一个module&#xff0c;将多个play组织在一个playbook中&#xff0c;即可以让…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数&#xff09;shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数&#xff09; 思路&#xff1a; 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...