当前位置: 首页 > news >正文

区间动态规划——最长回文子序列长度(C++)

把夜熬成粥,然后喝了它。

——2024年7月1日


书接上回:区间动态规划——最长回文子串(C++)-CSDN博客,大家有想到解决办法吗?

题目描述

        给定一个字符串s(s仅由数字和英文大小写字母组成,长度为1~1000),求s中最长的回文子序列长度。例如,s = “aferegga”,最长的回文子序列为“aerea”,其长度为5。


题解思路

        区间动态规划

下面是个人的思路:

1. 定义dp数组

        定义 dp[i][j]表示 s[i...j] 中最长回文子序列长度。

2. 确定dp限制条件

注:len表示字符串长度

        ①对于任何 len == 1 的字符串,dp[i][j] = 1;

        ②对于任何 len == 2 的字符串,dp[i][j] = dp[i][j-1] + (s[i] == s[j]);

        ③对于任何 len  ≥  3 的字符串,有两种情况:

        如果 s[i] == s[j],那么dp[i][j] = dp[i+1][j-1] + 2

        如果 s[i] != s[j],那么dp[i][j] = max(dp[i+1][j],dp[i][j-1])

解释如下:

        第一种情况,如果字符串长度为1的话,那么它一定是回文子串,长度唯一;

        第二种情况,如果字符串长度为2,那它就有两种可能,要么这两个字符相等,要么不等,不管哪一种情况,这个字符串的回文子序列至少是大于等于1的(第一种情况),如果相等,无非是把这个相等的加上即可。

        第三种情况,字符串长度不小于3时,也有两种可能:
        如果 s[i] == s[j],那么当前最长回文子序列长度就等于上一次的回文子序列长度加上2(两个相同的字符),也可以表示为dp[i][j] = dp[i+1][j-1] + 2*(s[i] == s[j])
        如果 s[i] != s[j],那么当前最长回文子序列长度至少是在 s[i+1....j]和s[i....j-1]中取最大值,即dp[i][j] = max(dp[i+1][j],dp[i][j-1])


推导过程

用矩阵推导如下:

 

代码展示

// 最长回文子序列长度
int getLongestPalind(string s){int size = s.size();vector<vector<int>> dp(size, vector<int> (size, 0));// 定义dp数组// dp[i][j]表示从i到j的最长子回文字符串长度for(int len = 1; len <= size; len++){for(int i = 0; i + len - 1 < size; i++){int j = i + len - 1;if(len == 1){dp[i][j] = 1;}else if(len == 2){dp[i][j] = dp[i][j-1] + (s[i] == s[j]);}else{if(s[i] == s[j]){dp[i][j] = dp[i+1][j-1] + 2 * (s[i] == s[j]);}else{dp[i][j] = max(dp[i+1][j], dp[i][j-1]);}}}}return dp[0][size-1];
}

运行结果

完整代码

// 区间动态规划
#include<iostream>
#include<vector>
#include<string>using namespace std;// 最长回文子序列长度
int getLongestPalind(string s){int size = s.size();vector<vector<int>> dp(size, vector<int> (size, 0));// 定义dp数组// dp[i][j]表示从i到j的最长子回文字符串长度for(int len = 1; len <= size; len++){for(int i = 0; i + len - 1 < size; i++){int j = i + len - 1;if(len == 1){dp[i][j] = 1;}else if(len == 2){dp[i][j] = dp[i][j-1] + (s[i] == s[j]);}else{if(s[i] == s[j]){dp[i][j] = dp[i+1][j-1] + 2 * (s[i] == s[j]);}else{dp[i][j] = max(dp[i+1][j], dp[i][j-1]);}}}}return dp[0][size-1];
}int main(){string s;cout<<"请输入字符串s:";cin>>s;cout<<"最长回文子序列长度为"<<getLongestPalind(s)<<endl;return 0;
}

相关文章:

区间动态规划——最长回文子序列长度(C++)

把夜熬成粥&#xff0c;然后喝了它。 ——2024年7月1日 书接上回&#xff1a;区间动态规划——最长回文子串&#xff08;C&#xff09;-CSDN博客&#xff0c;大家有想到解决办法吗&#xff1f; 题目描述 给定一个字符串s&#xff08;s仅由数字和英文大小写字母组成&#xff0…...

无人机远程控制:北斗短报文技术详解

无人机&#xff08;UAV&#xff09;技术的快速发展和应用&#xff0c;使得远程控制成为了一项关键技术。无人机远程控制涉及无线通信、数据处理等多个方面&#xff0c;其中北斗短报文技术以其独特的优势&#xff0c;在无人机远程控制领域发挥着重要作用。本文将详细解析无人机远…...

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题 在学习一些经典模型时&#xff0c;其中得维度变化关系总搞不太明白&#xff0c;集中学习了以下&#xff0c;在此作以梳理总结&#xff1a; 一般来说涉及到的维度变换都是四个维度&#xff0c;当batch size4&#xff0c;图像尺寸为640*640&a…...

食品行业怎么用JSON群发短信

食品作为日常生活不可缺少的元素&#xff0c;市场需求是很稳定的&#xff0c;但是份额就那么多&#xff0c;商家都要来抢占的话&#xff0c;就需要运营推广各凭本事&#xff0c;市场运营中选择合适的推广方式&#xff0c;可以增加店铺销售额&#xff0c;很多实体店或商城都会建…...

MySQL高级-MVCC-隐藏字段

文章目录 1、介绍2、测试2.1、进入服务器中的 /var/lib/mysql/atguigu/2.2、查看有主键的表 stu2.3、查看没有主键的表 employee2.3.1、创建表 employee2.3.2、查看表结构及其其中的字段信息 1、介绍 ---------------- | id | age | name | ---------------- | 1 | 1 | Js…...

探索PcapPlusPlus开源库:网络数据包处理与性能优化

文章目录 0. 本文概要1. PcapPlusPlus介绍1.1 概述1.2主要特性和功能1.3 PcapPlusPlus 主要模块关系和依赖1.4 网络协议层处理过程 2. 实例2.1 基于 PcapPlusPlus 的应用程序设计和封装流程&#xff1a;2.2 多线程示例代码2.3 代码说明&#xff1a; 3. 程序性能进一步优化3.1 避…...

深入理解SSH:网络安全的守护者

在当今数字化时代&#xff0c;网络安全已成为全球关注的焦点。随着网络攻击手段的不断升级&#xff0c;保护数据传输的安全性变得尤为重要。SSH&#xff08;Secure Shell&#xff09;作为一种安全的网络协议&#xff0c;为远程登录和网络服务提供了强大的安全保障&#xff0c;成…...

DDD学习笔记四

领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略&#xff1a; 1&#xff09;学习已有系统&#xff0c;重用已有模型 2&#xff09;使用分类标签。分类标签来源于领域&#xff0c;需要我们研究一些资料并做一些提炼。从采用5W…...

Head First设计模式中的典型设计模式解析与案例分析

Head First设计模式中的典型设计模式解析与案例分析 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 《Head First设计模式》是一本广受欢迎的书籍&#xff0c…...

iptables 防火墙(一)

iptables 防火墙&#xff08;一&#xff09; 一、Linux 防火墙基础防火墙分类 二、iptables 的表、链结构规则表规则链数据包过滤的匹配流程 三、编写防火墙规则iptables 的安装iptables的基本语法规则的匹配条件通用匹配隐含匹配显式匹配 四、总结 在网络安全的世界里&#xf…...

数据库物理结构设计-定义数据库模式结构(概念模式、用户外模式、内模式)、定义数据库、物理结构设计策略

一、引言 如何基于具体的DBMS产品&#xff0c;为数据库逻辑结构设计的结果&#xff0c;即关系数据库模式&#xff0c;制定适合应用要求的物理结构 1、在设计数据库物理结构前&#xff0c;数据库设计人员首先 要充分了解所用的DBMS产品的功能、性能和特点&#xff0c;包括提供…...

QT加载安装外围依赖库的翻译文件后翻译失败的现象分析:依赖库以饿汉式的形式暴露单例接口导致该现象的产生

1、前提说明 VS2019 QtClassLibaryDll是动态库,QtWidgetsApplication4是应用程序。 首先明确:动态库以饿汉式的形式进行单例接口暴露; 然后,应用程序加载动态库的翻译文件并进行全局安装; // ...QTranslator* trans = new QTranslator();//qDebug() << trans->…...

13_旷视轻量化网络--ShuffleNet V2

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客 1.1 简介 ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型&#xff0c;主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本&#xff0c;重点在于提供更高效的模…...

Linux系统编程--进程间通信

目录 1. 介绍 1.1 进程间通信的目的 1.2 进程间通信的分类 2. 管道 2.1 什么是管道 2.2 匿名管道 2.2.1 接口 2.2.2 步骤--以父子进程通信为例 2.2.3 站在文件描述符角度-深度理解 2.2.4 管道代码 2.2.5 读写特征 2.2.6 管道特征 2.3 命名管道 2.3.1 接口 2.3.2…...

docker-本地部署-后端

前置条件 后端文件 这边是一个简单项目的后端文件目录 docker服务 镜像文件打包 #命令行 docker build -t author/chatgpt-ai-app:1.0 -f ./Dockerfile .红框是docker所在文件夹 author&#xff1a;docker用户名chatgpt-ai-app&#xff1a;打包的镜像文件名字:1.0 &#…...

TLS + OpenSSL + Engine + PKCS#11 + softhsm2 安全通信

引擎库路径只有在 /lib 下才能被 "LOAD" 识别到&#xff0c;OpenSSL的ReadMe给的示例在/lib&#xff0c;大概是在构建OpenSSL时默认的configure指定了lib路径 // #define PKCS11_ENGINE_PATH "/usr/lib/x86_64-linux-gnu/engines-1.1/pkcs11.so" #define …...

Unity实现简单的MVC架构

文章目录 前言MVC基本概念示例流程图效果预览后话 前言 在Unity中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;框架是一种架构模式&#xff0c;用于分离游戏的逻辑、数据和用户界面。MVC模式可以帮助开发者更好地管理代码结构&#xff0c;提高代码的可维护性…...

【简单讲解下OneFlow深度学习框架】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

FastGPT 调用Qwen 测试Hello world

Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录&#xff0c; 点击右上角的 新建 点击 这里&#xff0c;配置AI使用本地 ollama跑的qwen模型 问题&#xff1a;树上有3只鸟&#xff0c;开了一枪&#…...

Golang-GMP

GMP调度 golang-GMP语雀笔记整理 GMP调度设计目的&#xff0c;为何设计GMP?GMP的底层实现几个核心数据结构GMP调度流程 设计目的&#xff0c;为何设计GMP? 无论是多进程、多线程目的都是为了并发提高cpu的利用率&#xff0c;但多进程、多线程都存在局限性。比如多进程通过时…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...