当前位置: 首页 > news >正文

【图论】200. 岛屿问题

200. 岛屿问题

难度:中等
力扣地址:https://leetcode.cn/studyplan/top-100-liked/

在这里插入图片描述

问题描述

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 1:

输入:grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
输出:1

示例 2:

输入:grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
输出:3

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0''1'

问题分析

有没有小伙伴跟我一样,这类题目一看就想尝试一下深度优先遍历 DFS ?

DFS 写起来比较简单,也比较容易理解,所以真心推荐合适场景下考虑 DFS。

如下图所示,白色筷子表示 “水”,也就是遍历时的边界。
在这里插入图片描述
所以接下的问题就非常简单,我们从 (0, 0) 这个坐标出发,如果是陆地就 travel,也就是 DFS 遍历,如果是水,就修改方向,如果没有地方去了,就切换到下一个陆地。

(为了更好理解,我们可以考虑:把经过的陆地,全部都换成水,避免下次还来这个地方)

解题代码

对应的 C++ 代码如下:

class Solution {
public:void travel(vector<vector<char>>& grid, int x, int y) {// 遇到边界或没有可访问的点if (x >= grid.size() || x < 0 || y >= grid[0].size() || y < 0 || grid[x][y] == '0') {return;}// 标记一下已经访问grid[x][y] = '0';// 四个方向 traveltravel(grid, x + 1, y);travel(grid, x - 1, y);travel(grid, x, y + 1);travel(grid, x, y - 1);}int numIslands(vector<vector<char>>& grid) {// 记录结果int result = 0;// 根据 (i, j) 开始尝试 travelfor (int i = 0; i < grid.size(); i++) {for (int j = 0; j < grid[0].size(); j++) {// 如果遇到的这个点是陆地if (grid[i][j] == '1') {// 开始traveltravel(grid, i, j);// travel 结束后 + 1,表示那一片陆地已经访问过了result += 1;}}}return result;}
};
  • 时间复杂度:O(MN)
  • 空间复杂度:O(MN)

在这里插入图片描述

对应的 java 代码如下:

class Solution {// 定义 travel 方法public void travel(char[][] grid, int x, int y) {// 遇到边界或没有可访问的点if (x >= grid.length || x < 0 || y >= grid[0].length || y < 0 || grid[x][y] == '0') {return;}// 标记已经访问过的点grid[x][y] = '0';// 四个方向进行递归调用travel(grid, x + 1, y);travel(grid, x - 1, y);travel(grid, x, y + 1);travel(grid, x, y - 1);}// 定义 numIslands 方法public int numIslands(char[][] grid) {// 记录结果int result = 0;// 遍历整个网格for (int i = 0; i < grid.length; i++) {for (int j = 0; j < grid[0].length; j++) {// 如果遇到陆地if (grid[i][j] == '1') {// 开始进行递归访问travel(grid, i, j);// 访问结束后计数加一result++;}}}// 返回结果return result;}
}

对应的python代码为

class Solution:def travel(self, grid, x, y):# 遇到边界或没有可访问的点if x >= len(grid) or x < 0 or y >= len(grid[0]) or y < 0 or grid[x][y] == '0':return# 标记已经访问过的点grid[x][y] = '0'# 四个方向进行递归调用self.travel(grid, x + 1, y)self.travel(grid, x - 1, y)self.travel(grid, x, y + 1)self.travel(grid, x, y - 1)def numIslands(self, grid):# 记录结果result = 0# 遍历整个网格for i in range(len(grid)):for j in range(len(grid[0])):# 如果遇到陆地if grid[i][j] == '1':# 开始进行递归访问self.travel(grid, i, j)# 访问结束后计数加一result += 1# 返回结果return result

总结

作为 DFS 的一个比较简单的例子,限制条件也比较少,只需要考虑边界问题即可。先应该学习一下 DFS 的基本逻辑,然后能够写 DFS 的代码,在此基础上稍微改改就可以刷这道题。

我更加想称这个操作为防水游戏,就是把每块岛屿都用海水淹没,看看需要操作多少次。

多谢小伙伴们的点赞支持 ~

Smileyan
2024.06.30 23:52

相关文章:

【图论】200. 岛屿问题

200. 岛屿问题 难度&#xff1a;中等 力扣地址&#xff1a;https://leetcode.cn/studyplan/top-100-liked/ 问题描述 给你一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的的二维网格&#xff0c;请你计算网格中岛屿的数量。 岛屿总是被水包围&…...

AI学习指南机器学习篇-随机森林的优缺点

AI学习指南机器学习篇-随机森林的优缺点 引言 机器学习是人工智能领域的重要分支&#xff0c;其中随机森林(Random Forest)算法以其高性能和广泛应用而备受瞩目。然而&#xff0c;就像任何其他算法一样&#xff0c;随机森林也有其优缺点。本文将深入探讨随机森林算法的优势和…...

基于boost::beast的http服务器(上)

文章目录 1.beast网落库介绍2.相关类及api3.异步读写的处理3.1异步写案例3.2异步读案例 1.beast网落库介绍 Beast网络库是一个基于Boost库的C网络库&#xff0c;特别用于开发高性能的网络应用程序。它提供了一组易于使用的API&#xff0c;主要用于处理HTTP和WebSocket协议&…...

深度学习之近端策略优化(Proximal Policy Optimization,PPO)

PPO(Proximal Policy Optimization,近端策略优化)是深度强化学习中的一种算法,属于策略梯度方法中的一种。PPO通过优化策略来最大化累积奖励,具有稳定性好、易于调参等优点,是目前广泛应用的一种深度强化学习算法。下面介绍PPO的基本原理和流程。 PPO基本原理 PPO算法的…...

用pycharm进行python爬虫的步骤

使用 pycharm 进行 python 爬虫的步骤&#xff1a;下载并安装 pycharm。创建一个新项目。安装 requests 和 beautifulsoup 库。编写爬虫脚本&#xff0c;包括获取页面内容、解析 html 和提取数据的代码。运行爬虫脚本。保存和处理提取到的数据。 用 PyCharm 进行 Python 爬虫的…...

重写功能 rewrite

Nginx服务器利用 ngx_http_rewrite_module 模块解析和处理rewrite请求&#xff0c;此功能依靠 PCRE(perl compatible regular expression)&#xff0c;因此编译之前要安装PCRE库&#xff0c;rewrite是nginx服务器的重要功能之 一&#xff0c;用于实现URL的重写&#xff0c;URL的…...

ISO19110操作要求类中/req/operation/operation-attributes的详细解释

/req/operation/operation-attributes 要求: 只有要素属性&#xff08;feature attributes&#xff09;可以通过‘observesValueOf’、‘triggeredByValuesOf’或‘affectsValuesOf’关联角色与要素操作&#xff08;feature operations&#xff09;关联。 具体解释 定义 要…...

访客(UV)、点击量(PV)、IP、访问量(VV)概念

1、https://www.cnblogs.com/QingPingZm/articles/13855808.htmlhttps://www.cnblogs.com/QingPingZm/articles/13855808.html...

C++系统编程篇——Linux第一个小程序--进度条

&#xff08;1&#xff09;先引入一个概念&#xff1a;行缓冲区 \r和\n \r表示回车 \n表示回车并换行 ①代码一 #include<stdio.h> #include<unistd.h> int main()…...

一个中文和越南语双语版本的助贷平台开源源码

一个中文和越南语双语版本的助贷平台开源源码。后台试nodejs。 后台 代理 前端均为vue源码&#xff0c;前端有中文和越南语。 前端ui黄色大气&#xff0c;逻辑操作简单&#xff0c;注册可对接国际短信&#xff0c;可不对接。 用户注册进去填写资料&#xff0c;后台审批&…...

【游戏引擎之路】登神长阶(五)

5月20日-6月4日&#xff1a;攻克2D物理引擎。 6月4日-6月13日&#xff1a;攻克《3D数学基础》。 6月13日-6月20日&#xff1a;攻克《3D图形教程》。 6月21日-6月22日&#xff1a;攻克《Raycasting游戏教程》。 6月23日-6月30日&#xff1a;攻克《Windows游戏编程大师技巧》。 …...

FireAct:使用智能体(agent)微调大语言模型

1.概述 近年来,针对语言模型(LMs)的研究致力于探索其与外部工具或环境互动的能力,以推进新型语言代理的发展。此类代理具备从环境反馈中汲取新知识、通过语言推理进行连续决策,以及借助自我反思提升任务解决能力的能力。工业界的进展,如ChatGPT插件,凸显了语言代理在实际…...

20240626让飞凌的OK3588-C开发板在相机使用1080p60分辨率下预览

20240626让飞凌的OK3588-C开发板在相机使用1080p60分辨率下预览 2024/6/26 15:15 4.2.1 全编译测试 在源码路径内&#xff0c;提供了编译脚本 build.sh&#xff0c;运行该脚本对整个源码进行编译&#xff0c;需要在终端切换到解压 出来的源码路径&#xff0c;找到 build.sh 文件…...

python数据分析——数据分类汇总与统计

数据分类汇总与统计 前言一、Groupby分类统计语法按列分组示例一示例二示例三 遍历各分组示例 使用字典和Series分组示例 使用函数分组示例 二、数据聚合groupby的聚合函数示例一示例二 逐列及多函数应用示例一示例二 返回不含行索引的聚合数据示例 三、一般性的“拆分-应用-合…...

iOS17系统适配

iOS17 新功能 文章目录 iOS17 新功能iOS17支持哪几款机型Xcode15新特性iOS17-开发适配指南 横屏待机 在iOS 17中&#xff0c;还带来了横屏待机功能&#xff0c;苹果将这个新功能命名为“Standby”模式&#xff0c;为 iPhone 带来了全新的玩法。iPhone启用之后&#xff0c;默认情…...

树洞陪聊陪玩交友程序系统源码,解锁交友新体验

在繁忙的都市生活中&#xff0c;你是否渴望找到一片属于自己的秘密花园&#xff0c;倾诉心声、分享快乐&#xff1f;今天&#xff0c;就让我带你走进这片名为“树洞”的神秘之地&#xff0c;感受陪聊陪玩交友的全新魅力&#xff01; &#x1f333;树洞陪聊陪玩交友程序系统 你…...

区间动态规划——最长回文子序列长度(C++)

把夜熬成粥&#xff0c;然后喝了它。 ——2024年7月1日 书接上回&#xff1a;区间动态规划——最长回文子串&#xff08;C&#xff09;-CSDN博客&#xff0c;大家有想到解决办法吗&#xff1f; 题目描述 给定一个字符串s&#xff08;s仅由数字和英文大小写字母组成&#xff0…...

无人机远程控制:北斗短报文技术详解

无人机&#xff08;UAV&#xff09;技术的快速发展和应用&#xff0c;使得远程控制成为了一项关键技术。无人机远程控制涉及无线通信、数据处理等多个方面&#xff0c;其中北斗短报文技术以其独特的优势&#xff0c;在无人机远程控制领域发挥着重要作用。本文将详细解析无人机远…...

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题 在学习一些经典模型时&#xff0c;其中得维度变化关系总搞不太明白&#xff0c;集中学习了以下&#xff0c;在此作以梳理总结&#xff1a; 一般来说涉及到的维度变换都是四个维度&#xff0c;当batch size4&#xff0c;图像尺寸为640*640&a…...

食品行业怎么用JSON群发短信

食品作为日常生活不可缺少的元素&#xff0c;市场需求是很稳定的&#xff0c;但是份额就那么多&#xff0c;商家都要来抢占的话&#xff0c;就需要运营推广各凭本事&#xff0c;市场运营中选择合适的推广方式&#xff0c;可以增加店铺销售额&#xff0c;很多实体店或商城都会建…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...